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Abstract

The seminal multiple view stereo benchmark evaluations
from Middlebury and by Strecha et al. have played a major
role in propelling the development of multi-view stereopsis
methodology. Although seminal, these benchmark datasets
are limited in scope with few reference scenes. Here, we
try to take these works a step further by proposing a new
multi-view stereo dataset, which is an order of magnitude
larger in number of scenes and with a significant increase
in diversity. Specifically, we propose a dataset containing
80 scenes of large variability. Each scene consists of 49
or 64 accurate camera positions and reference structured
light scans, all acquired by a 6-axis industrial robot. To
apply this dataset we propose an extension of the evalua-
tion protocol from the Middlebury evaluation, reflecting the
more complex geometry of some of our scenes. The pro-
posed dataset is used to evaluate the state of the art multi-
view stereo algorithms of Tola et al., Campbell et al. and
Furukawa et al. Hereby we demonstrate the usability of the
dataset as well as gain insight into the workings and chal-
lenges of multi-view stereopsis. Through these experiments
we empirically validate some of the central hypotheses of
multi-view stereopsis, as well as determining and reaffirm-
ing some of the central challenges.

1. Introduction
Stereopsis including both two and multiple views (MVS)

is one of the central problems in computer vision, allow-
ing us easy capture of our environment such that appeal-
ing 3D models can be made. This has many applications
in entertainment, augmented reality, robotics, as well as in-
dustrial inspection and aireal cartography. During the last
decade the advances in MVS have been driven by the sem-
inal benchmark MVS datasets. Popular benchmark data
include the Middlebury Multi-View Stereo data [17] and
the building dataset by Strecha et al. [18]. Although these
datasets have been tremendously useful they also have their
limitations due to their relatively small sizes – Middlebury
contains two scenes and Stretcha et al. contains twelve. To

Figure 1. Subset of point clouds in our reference dataset. The im-
ages shows point reconstruction in scenes with a variability in ge-
ometry, reflectance, and texture. These images are grouped in our
analysis into categories like groceries and vegetables. The point
reconstructions are shown before pruning.

continue the important advancement of MVS, the basis for
empirical development comparison and evaluation has to
advance along with the methodology.

To address this issue we propose a new dataset aimed
at MVS, consisting of 80 different scenes. This makes this
dataset almost an order of magnitude larger than the cur-
rent state of the art. Examples of point clouds from the pro-
posed dataset are shown in Fig. 1. Apart from an increase in
the size of the dataset, the variability in surface reflectance
properties and geometric complexity have also been in-
creased. The previous sets mostly focused on Lambertian
surfaces of relatively simple geometry – e.g. Strecha et al.
[18] consists of twelve outdoor scenes of historical build-
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ings, with few specular surfaces such as steel and glass.
The dataset proposed here is compiled using a 6-axis in-

dustrial robot, with the evaluation reference achieved via a
structured light scanner. We have chosen the term refer-
ence data instead of ground truth, to emphasize that these
are also physical measurements. As described in Section 3,
this setup enables us to make data of high quality and quan-
tity. After proposing a new evaluation protocol in Section 4,
which is an update from the one in [17] to address the high
increase in geometric complexity, an evaluation of MVS
methods on this dataset is presented in Section 5. This eval-
uation validates the usability of the dataset as well as pro-
viding insight into issues affecting MVS performance.

The evaluation of Section 5, specifically applies the
methods of Tola et al. [19], Furukawa and Ponce [3] and
Campbell et al. [2] to the proposed dataset computing 3D
point reconstructions as well as dense triangular surface re-
constructions based on these. Here we investigate the prop-
erties of the meshing. Among others, we find that there is
a tradeoff between how accurate the method is and its com-
pleteness, so the most complete method is the least accu-
rate and vice versa. Meshing is generally poor for complex
geometries, despite quite accurately reconstructed surface
points. So, there is a large research potential in improving
meshing methods. The dataset consists of images, camera
calibration (internal and external), reference scans and ob-
servability masks, as well as code for evaluation1.

2. Related work

The first work that attempted to benchmark MVS algo-
rithms was [17] where the performance of six algorithms
was measured across six different scenes. The authors sub-
sequently invited submissions of reconstruction results from
dozens of different algorithms that were publicly ranked
against each other. The somewhat artificial, low-resolution
setup of [17] was subsequently improved in the evaluation
effort of [18] that consisted of high-resolution images of
outdoor scenes. Both [17] and [18] made an invaluable con-
tribution to the advancement of MVS technologies by pro-
viding a solid platform on which improvement to existing
state of the art can be measured and recorded.

Our work contributes to the evaluation of MVS, albeit
with a different focus. In [17, 18] the evaluators’ basic ques-
tion was “which MVS algorithm works best for this scene?”
In our work we ask the question “what scene types works
best for this MVS algorithm and what scene features make
MVS reconstruction fail?” Posing the question this way fa-
cilitates more detailed understanding of current state of the
art MVS and several future research challenges for MVS.

The evaluations of [17, 18] consider a small number of
3D scenes that are thought to be representative of real-world

1Available from http://roboimagedata.imm.dtu.dk/

application domains for MVS. In practice, they choose
well-textured diffuse-reflectance 3D objects on which MVS
algorithms tend to perform quite well. They then apply sev-
eral algorithms in order to create a performance ranking for
each scene. Our approach is to consider the widest possible
range of 3D scenes one might encounter in real applications,
and then consider how particular types of MVS algorithms
perform on each type of scene. This approach sheds light
on the performance of MVS technology as a whole and its
overall suitability for particular applications.

Most successful MVS algorithms can be divided into two
main categories: point-cloud based (e.g. [3, 5, 7, 19, 20])
and volume-based methods (e.g. [6, 11, 12]). Volume-based
methods aggregate photo-consistency data in a 3D volume
and compute a 3D surface within that volume using sur-
face optimisation. On the other hand, point-cloud based
methods convert photo-consistency data into a 3D point-
cloud, which is then converted into a 3D surface using stan-
dard meshing techniques such as Poisson reconstruction [9],
Graph-cuts [20] or signed distance functions [13]. In this
work we focus on point-cloud based methods because we
can easily isolate the point-cloud stage from the surface ex-
traction stage and all the filtering and regularisation this en-
tails.

Within point-cloud based methods we can distinguish
two different paradigms. Feature expansion [3] and depth-
map fusion [2, 5, 7, 19, 20]. Under the feature expansion
paradigm the algorithm starts from a set of 3D features in
the scene, which then expand into nearby 3D points while
outliers are filtered using occlusion reasoning. Depth-map
fusion works by computing independent depth-maps for
each image using neighbouring images. These depth-maps
are then merged into a single point-cloud. We chose Fu-
rukawa and Ponce [3], Campbell et al. [2], and Tola et al.
[19] as representative algorithms from the feature expansion
and depth-map fusion families. It must be stressed again
that our aim is not to directly compare the three methods or
the three families of algorithms. Rather, by running these
methods on a large selection of datasets we highlight the
effect on performance of different types of 3D scenes.

Perhaps closer in spirit to the present work are some pre-
vious attempts at investigating in detail different aspects of
MVS performance. In [10] there is a theoretical analysis
of the impact of scene geometry on feature-expansion MVS
methods. A serious evaluation of MVS algorithms based
on depth map fusion is presented in [8]. Our work can be
seen as an empirical analysis of both families of MVS algo-
rithms.

A recent trend in MVS research has been to automate
all aspects of the MVS pipeline, including viewpoint selec-
tion and image capture. For example, in [1, 4] MVS is ap-
plied to photographs of famous landmarks, harvested from
online photo-collections. Similarly, the authors of [21] pro-
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pose using MVS with sequences of images obtained by a
remote controlled model helicopter for the purposes of au-
tomatic 3D mapping. These examples highlight a detailed
understanding of the performance of MVS algorithms under
different conditions, which is the purpose of the proposed
dataset.

3. Data
Evaluation of calibrated MVS reconstruction requires

data with knowledge about the camera position as well as
the spatial position of the depicted surface. To get this we
have chosen to construct a controlled environment for im-
age acquisition similar to Seitz et al. [17]. In our setup,
the camera is mounted on a 6 axis industrial robot as illus-
trated in Fig. 2. This provides flexible and precise camera
pose. At each position we obtain a surface point cloud using
structured light. Further we control the illumination by us-
ing a set of 18 light emitting diodes (LEDs) mounted above
the scene.

The robot provides very precise camera positioning due
to its very high position repeatability2. We obtain actual po-
sitions by a set of predefined path locations, and this path is
calibrated using a fixed checkerboard pattern. The encoded
path has subsequently been used for acquiring images of the
80 scenes in our dataset. The introduction of the robot arm
allows for a free design of our experiment. In some of the
scenes we let the robot move to camera positions on con-
centric spheres, something that would not be possible with
a static setup.

The 80 scenes contain different number of camera posi-
tions. 59 scenes contain 49 camera positions and 21 scenes
contain 64 camera positions. Example data is shown in
Fig. 1. The camera positions of the smaller sets are placed
on a sphere with the radius of 50 cm, i.e. around 35 cm from
the scene surfaces. The larger sets contain an additional 15
positions on a concentric sphere at a distance of 65 cm from
the scene centres as shown in Fig. 3. The content of the
scene is chosen with varying reflectance, texture, and geo-
metric properties, and include fabric, print, groceries, fruit,
a bunny sculpture, and more, see Fig. 1.

The dataset has variation in light obtained by strobing the
LEDs in groups to generate directional lighting variations.
It should, however, be noted that for the experiments in this
paper only the uniform illumination images are used, gener-
ated by using all 18 LEDs at once3. The image resolution is
1200× 1600 pixels in 8 bit RGB colour, with practically all
the scene being in the depth of field (long exposure, small
aperture).

The reference points, obtained from structured light
scans, are based on binary stripe encoding, which is rec-

2The robot is coded with a predefined path, and all positions on that
path are calibrated photogrammetrically.

3In few of the extreme positions the robot shaded a few of the LED’s.

Figure 2. Top shows photos of the industrial robot mounted with
the two cameras and the projector. Bottom is a schematic illustra-
tion of the setup, consisting of the industrial robot, LEDs in the
ceiling, and the scene placed on a table.

ommended as being one of the most precise structured light
methods [14, 15, 16].

Our experiments are dependent on the accuracy of struc-
tured light scans, and we have therefore measured the scan
precision using an object with known geometry. We chose
a bowling ball, because it is a spherical object of suitable
size with simple and known geometry. A reference scan
was obtained from each camera position, and all these scans
were combined to make up the total reference data for each
scene. For each scan we estimated the centre position and
the radius of the sphere form the surface points using lin-
ear least squares. This also enabled us to estimate the de-
viation of the individual points from the sphere’s surface.
We obtained a standard deviation of 0.17 mm on the cen-
tre position estimates, and an average standard deviation on
the surface points of 0.14 mm corresponding roughly to 0.6
pixels. Positioning repeatability of the robot turned out to
be very high. Over the two months of data acquisition pe-
riod we performed 10 calibrations, and the average standard
deviation of the camera positions were 0.0031 mm. The re-
projection error here was 0.067 pixels.

The reference scans are not complete. The main cause is
that we only cover the front of the objects, but still there are
areas seen by the cameras that have not been covered. This
e.g. occurs because of object self occlusion and small holes
where the structured light images have been severely under-
exposed. Despite these minor incompleteness the scans are
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Figure 3. Camera positions at 50 cm distance (black) and 65 cm
distance (red).

very dense, each containing 13.4 million points on average.
Only the scene objects are used in the evaluation. This is

done by removing the part of the reconstruction containing
the supporting table, simply by discarding points below a
manually placed plane.

4. Evaluation method

The evaluation method must be chosen according to the
nature of the reference dataset. With our choice of scenes,
where textural and geometric complexity varies, we must
consider how to handle issues like missing data, how to
quantify the distance between two irregularly sampled sur-
face reconstructions, and how to handle outliers. With these
considerations in mind, we have strived at an evaluation
method that is unbiased, but still sensitive to performance
differences of the considered MVS algorithms.

4.1. Missing Data

To obtain a fair comparison we must handle missing
data. In the Middlebury Multi-View Stereo benchmark [17],
the issue of missing data was addressed by fitting a closed
surface to the reconstructed structured light points. Surface
points were then added in areas with no reference data, by
placing points on the reconstructed surface with the same
density as the rest of the scanned surface. In the evaluation,
points closest to the inserted data were then removed. In
effect, this creates an implicit 3D observability mask that
allows an evaluation only of the points within the mask.

In our evaluation method we have chosen a similar ap-
proach. We explicitly compute an observability mask, and
only evaluate stereo reconstructed points located within it.
This is because of the high complexity of some scenes as
well as the partial coverage, where the scenes are only seen
from one side, it is hard to obtain a good surface recon-
struction of the missing parts. The observability mask is
obtained as the union of the individual visibility mask esti-
mates of the 49 or 64 structured light scans. We employ a

voxel grid with a voxel size of 1 mm.
The reasoning behind the observability mask is that no

surface should be present between the reconstructed 3D
points and the cameras. A mask is hereby computed by
making a voxel grid around the object in question, and cast-
ing rays from the camera to the reconstructed points. These
rays are extended an extra 10 mm and all voxels along that
ray are marked as observed. The 10 mm depth assump-
tion is needed to include stereo points reconstructed imme-
diately behind the structured light reference points. The
threshold of 10 mm was chosen as a tradeoff between in-
cluding wrongly reconstructed MVS points in areas with
reference data, and excluding correct MVS points in areas
with no reference points.

4.2. Distances Between Reconstructions

As in the Middlebury evaluation [17], we also evalu-
ate based on the accuracy and the completeness. Accuracy
is measured as the distance from the MVS reconstruction
to the structured light reference, and the completeness is
measured from the reference to the MVS reconstruction.
Both MVS reconstructions and structured light references
are represented as point clouds, and for each point in one,
we calculate the closest distance to the other. For the mul-
tiple view stereo points we, however, only use the points
within the observability mask discussed above.

MVS methods, especially depthmap-fusion based ones,
typically generate more 3D points around strongly textured
surface regions. This can potentially cause a bias in the
evaluation where we ideally would like the error measure
uniformly sampled on the reconstructed surface. To avoid
this problem in our evaluation, we decimate the MVS point
clouds such that no two points are closer than 0.2 mm by
visiting the points randomly and removing nearby points
residing in a 0.2 mm neighborhood. This 0.2 mm sampling
threshold is chosen to match the estimated resolution of our
reference reconstruction. This decimation process ensures
an unbiased evaluation across the whole reconstruction by
keeping points in lower density areas, thus including out-
liers intact and reducing the effect of dense regions on the
overall reconstruction accuracy.

Our evaluation include both MVS reconstructed 3D
points as well as meshed surfaces from these points. To
handle the surfaces meshes in our evaluation, we convert
them back into point clouds. This is done by first supersam-
pling the faces with a lower point density than 0.2 mm and
then subsequently reducing the high point densities as de-
scribed above. This gives an equal comparison of the effect
of meshing, and the regularization of the result it implies.

For a given reconstruction, i.e. scene and method, the
distances of each 3D point are condensed into comparable
statistics by computing the mean and median for the the ac-
curacy and completeness. This is, however, first done by
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Figure 4. Performance over all 80 scenes of accuracy and com-
pleteness of reconstructed points (Pts) and meshed surfaces (Sur).
The error is measured both as mean and median. Tol is Tola et al.
[19], Fur is Furukawa and Ponce [3], and Cam is Campbell et al.
[2].

removing all distances over 20 mm. We remove points to
avoid biasing by outliers. In addition, spurious, closed sur-
faces are obtained by meshing the stereo reconstructions to
remove such outliers.

5. Evaluation
The MVS methods of Campbell et al. [2], Furukawa and

Ponce [3], and Tola et al. [19] have been evaluated by com-
paring both the raw point clouds and the mesh surfaces com-
puted from these. A summary of the overall performance is
shown in Fig. 4. The error measure from the MVS recon-
structions to the reference data shows the accuracy of the
method, whereas the opposite measures the completeness.
This figure shows clearly that there is a tradeoff between
completeness and accuracy with [19] being the most accu-
rate and [2] being the most complete. This tradeoff man-
ifests itself in the obtained detail at the expense of more
errors, most notably outliers. In this sense there is no clear
winner of the three methods. It should be noted that we did
not optimize the method parameters for a tradeoff between
the accuracy and completeness to make the methods more
comparable because this would take them away from their
original formulation. Furthermore, the method of Tola et al.
[19] is designed for much higher resolution images than the
ones used here, which in turn translates into a high accuracy
and low completeness on these images.

With the vast dataset presented here we have observed
some general trends for the investigated MVS methods.
Some findings are in accordance with our expectations and
others are surprising. Firstly, we found that largest source
of poor performance is by far the lack of texture, as seen
in Fig. 5. In many cases the meshing closes holes which

Figure 5. The top row shows an example of an object with missing
texture resulting in reconstructions with holes. The simple geom-
etry of the box did however recover the holes well. From left to
right: the reference data points, the [3] point reconstruction of and
the surface reconstruction of these points [9]. The middle row
shows a highly specular espresso coffee pot, which is just about
as difficult as it gets. From left to right: the reference data points,
the point reconstruction [2] and the surface reconstruction of these
points [9]. The bottom row shows a scene with both specularities
and lack of texture. From left to right: the reference data points,
the point and surface reconstructions of [19].

compensates for this lack of texture. The success of this
method, however, depends on the noise and the complexity
of the surface. The box sequence shown in Fig. 5 for ex-
ample is improved by meshing where the surface meshing
fills holes that closely follow the reference surface points.
For more complicated geometries the meshing does, how-
ever, not improve performance, but will often corrupt finer
details.

More surprisingly, we found that many other factors,
which we expected to seriously corrupt the results, were
not as problematic. As an example, the geometric complex-
ity of the scenes did not influence the results to the extent
we had expected. This was especially true for the point re-
constructions. Specular surfaces did, in a similar manner,
not influence the reconstructions as negatively as expected,
which is shown in Fig. 5. Testing this particular scene of
the espresso can with two view stereo, we did find a large
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Figure 6. Performance for different scene types. (a) is model houses, (b) is groceries, (c) is vegetables, (d) is building material, and (e) is
stuffed animals.

degradation of the result. Our hypothesis is that with MVS
there will almost always be an image pair, viewing a par-
ticular surface patch, which is uncorrupted by reflectance
– note that reflectance has a high visual effect, but only in
limited directions.

To enable a more refined analysis we grouped a part of
our dataset into scene type categories, aiming at isolating
more subtle effects. This also allows us to do an analysis
by factoring the result out into these categories, as shown in
Fig. 6. Here it is seen that the types of scenes typically used
such as (model) houses and diffuse square building materi-
als do well, whereas less traditional objects such as texture
poor and specular objects found in a grocery store are more
challenging.

5.1. Points vs. Surfaces

The state of the art in MVS has to some degree con-
verged upon an approach where 3D points are reconstructed
and then formed into a dense surface, typically via Poisson
reconstruction [9] – referred to as meshing. This is also
the case for the three state of the art methods presented
here. We evaluate both the 3D point reconstructions and the
meshed aggregates in order to investigate the properties of
the meshing, but also because there is a debate as to which
result is the correct to report.

As seen in Fig. 4, the point reconstructions in general
perform best, which expresses a very clear trend looking at
the individual reconstructions. As a general point, the cases
where the meshed results are best, are as the box in Fig. 5,
where there are large texture poor regions where no points
are estimated and the geometry is simple enough for the
implicit smoothing prior of the meshing to smooth noise and
fill holes. Typically this applies to flat or spherical surfaces.

Examples of surface meshing are shown in Fig. 7, which
illustrates how fine surface details are preserved by the
method of [2] where many surface points are reconstructed,
whereas many of these details are smoothed away in [19].
Complex geometry as seen in the middle front part of the
house images are, however, severely corrupted by the sur-
face meshing. This is one of the scenes where the meshing
performed worst relative to the 3D point reconstructions.
Firstly, it is seen that the meshing has problems with finer
details. Such fine details are inconsistent with the implicit
smoothing prior of the meshing algorithm. Secondly it is
seen that more fine detail are captured in [2], but also more
gross errors. This relates back to the accuracy/completeness
tradeoff discussed above, in that more complete 3D point
data gives more data to constrain the meshing. On the other
hand the meshing process is relatively sensitive to outliers,
which are increased by poorer accuracy. Sometime these
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outliers also seem to result in large surface portions being
hallucinated.

Overall, our investigation shows that the three state of
the art surface reconstruction algorithms investigated here
have high precision in reconstructing surface points. De-
pending on the number of generated points a more or less
detailed set of surface points can be obtained. Even small
features like a small antenna of a thickness of around 1 mm
on a model house was covered by precisely reconstructed
surface points. Extending these surface points to a triangu-
lar mesh, however, is not easily done and many of these fine
details are often lost. This is not surprising, because it can
be hard to distinguish points on small surface details from
groups of falsely detected points. Meshing the surfaces is,
however, an important task for bringing MVS to the use
for applications in e.g. entertainment, robotics, industrial
inspection or aireal cartography. We see this as a great chal-
lenge and hope that the provided dataset can aid in this de-
velopment as well as many other investigations within MVS
or other computer vision problems.

6. Conclusion
In this paper we have presented a dataset and an evalu-

ation procedure for MVS and performed an evaluation on
the three state of the art methods by Campbell et al. [2], Fu-
rukawa and Ponce [3], and Tola et al. [19]. These methods
have been evaluated in relation to estimated surface points
and meshed surfaces. Our evaluation is based on a large
collection of calibrated images and accurate 3D reference
points together with an evaluation procedure. We evaluate
both in relation to completeness and accuracy and we see
that there is a tradeoff between accuracy and completeness
in the three methods, such that the method of [19] has high-
est accuracy whereas Campbell et al. [2] obtained the high-
est completeness. This tradeoff can be caused by how dis-
criminative towards reconstructed points the methods are. A
high discrimination gives good accuracy but less complete-
ness, whereas the opposite is seen with less discrimination.
Surface meshing has a smoothing effect which is benefi-
cial for simple geometries, because it tends to fill out holes.
In general the effect of meshing is however not improving
performance, because small details will be corrupted. This
demonstrates the need for improvements of MVS meshing.

References
[1] C. Bailer, M. Finckh, and H. P. A. Lensch, “Scale robust

multi view stereo,” in ECCV. Springer-Verlag, 2012, pp.
398–411. 2

[2] N. D. Campbell, G. Vogiatzis, C. Hernández, and R. Cipolla,
“Using multiple hypotheses to improve depth-maps for
multi-view stereo,” in ECCV, 2008, pp. 766–779. 2, 5, 6,
7, 8

[3] Y. Furukawa and J. Ponce, “Accurate, dense, and robust mul-

tiview stereopsis,” TPAMI, vol. 32, no. 8, pp. 1362–1376,
2010. 2, 5, 7, 8

[4] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “To-
wards internet-scale multi-view stereo,” in CVPR, 2010, pp.
1434–1441. 2

[5] M. Goesele, B. Curless, and S. M. Seitz, “Multi-view stereo
revisited,” in CVPR, 2006, pp. 2402–2409. 2

[6] C. Hernández, G. Vogiatzis, and R. Cipolla, “Probabilistic
visibility for multi-view stereo,” in CVPR, 2007, pp. 1–8. 2

[7] V. H. Hiep, R. Keriven, P. Labatut, and J.-P. Pons, “Towards
high-resolution large-scale multi-view stereo,” in TPAMI,
2009, pp. 1430–1437. 2

[8] X. Hu and P. Mordohai, “Evaluation of stereo confidence in-
doors and outdoors,” in CVPR, 2010, pp. 1466–1473. 2

[9] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface
reconstruction,” in Proceedings of the fourth Eurographics
symposium on Geometry processing, 2006, pp. 61–70. 2, 5,
6

[10] R. Klowsky, A. Kuijper, and M. Goesele, “Modulation trans-
fer function of patch-based stereo systems,” in CVPR, 2012,
pp. 1386–1393. 2

[11] K. Kolev, T. Brox, and D. Cremers, “Fast joint estimation of
silhouettes and dense 3D geometry from multiple images,”
TPAMI, vol. 34, no. 3, pp. 493–505, 2012. 2

[12] S. Liu and D. B. Cooper, “A complete statistical inverse ray
tracing approach to multi-view stereo,” in CVPR, 2011, pp.
913–920. 2

[13] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “Dtam:
Dense tracking and mapping in real-time,” in ICCV, 2011,
pp. 2320–2327. 2

[14] J. Salvi, J. Pages, and J. Batlle, “Pattern codification
strategies in structured light systems,” Pattern Recognition,
vol. 37, no. 4, pp. 827–849, 2004. 3

[15] J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of
the art in structured light patterns for surface profilometry,”
Pattern recognition, vol. 43, no. 8, pp. 2666–2680, 2010. 3

[16] D. Scharstein and R. Szeliski, “High-accuracy stereo depth
maps using structured light,” in CVPR, vol. 1, 2003, pp. I–
195. 3

[17] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and
R. Szeliski, “A comparison and evaluation of multi-view
stereo reconstruction algorithms,” in CVPR, vol. 1, 2006, pp.
519–528. 1, 2, 3, 4

[18] C. Strecha, W. von Hansen, L. Van Gool, P. Fua, and
U. Thoennessen, “On benchmarking camera calibration and
multi-view stereo for high resolution imagery,” in CVPR,
2008, pp. 1–8. 1, 2

[19] E. Tola, C. Strecha, and P. Fua, “Efficient large-scale multi-
view stereo for ultra high-resolution image sets,” Machine
Vision and Applications, vol. 23, no. 5, pp. 903–920, 2012.
2, 5, 6, 7, 8

[20] G. Vogiatzis, C. Hernández, P. H. S. Torr, and R. Cipolla,
“Multiview stereo via volumetric graph-cuts and occlusion
robust photo-consistency,” TPAMI, vol. 29, no. 12, pp. 2241–
2246, 2007. 2

[21] A. Wendel, M. Maurer, G. Graber, T. Pock, and H. Bischof,
“Dense reconstruction on-the-fly,” in CVPR, 2012, pp. 1450–
1457. 2

7



Figure 7. Reference points (upper left) and meshed surfaces of building where details are corrupted by the smoothing introduced by surface
meshing. Upper right is [19], lower left is [3], and lower right is [2]. The statuette of doves is reconstructed following the same order. As
with the building a slight corruption of detail is the result of surface reconstruction. In both scenes the artifacts around the edges are results
of the surface reconstruction step and is not present in the point reconstruction.
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