
Int J Comput Vis (2012) 97:91–103
DOI 10.1007/s11263-011-0482-7

Self-calibrated, Multi-spectral Photometric Stereo for 3D Face
Capture

George Vogiatzis · Carlos Hernández

Received: 7 October 2010 / Accepted: 3 July 2011 / Published online: 6 August 2011
© Springer Science+Business Media, LLC 2011

Abstract This paper addresses the problem of obtaining
3d detailed reconstructions of human faces in real-time and
with inexpensive hardware. We present an algorithm based
on a monocular multi-spectral photometric-stereo setup.
This system is known to capture high-detailed deforming
3d surfaces at high frame rates and without having to use
any expensive hardware or synchronized light stage. How-
ever, the main challenge of such a setup is the calibration
stage, which depends on the lights setup and how they in-
teract with the specific material being captured, in this case,
human faces. For this purpose we develop a self-calibration
technique where the person being captured is asked to per-
form a rigid motion in front of the camera, maintaining a
neutral expression. Rigidity constrains are then used to com-
pute the head’s motion with a structure-from-motion algo-
rithm. Once the motion is obtained, a multi-view stereo al-
gorithm reconstructs a coarse 3d model of the face. This
coarse model is then used to estimate the lighting param-
eters with a stratified approach: In the first step we use a
RANSAC search to identify purely diffuse points on the
face and to simultaneously estimate this diffuse reflectance
model. In the second step we apply non-linear optimiza-
tion to fit a non-Lambertian reflectance model to the outliers
of the previous step. The calibration procedure is validated
with synthetic and real data.
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1 Introduction

The 3d capture of human faces is an important task in
the fields of computer vision and computer graphics. Re-
cent progress in hardware capabilities make the demand of
such technology even greater than before, with applications
ranging from medical care to human behavior or computer
games. Even though much progress has been made in the re-
cent years in deformable surface capture, faces are specially
difficult to capture because humans are very well trained in
face recognition and are thus very sensitive to reconstruc-
tion errors. Recent progress in facial capture has produced
very high quality reconstructions to the point of being able
to leap the “uncanny valley” and produce photo-realistic an-
imations that may fool a person into thinking that the avatar
is real (Image Metrics, U.I.f.C.T. 2002). However, these
types of results can only be achieved with very expensive
hardware and thousands of man-hours of interactive edit-
ing. In this paper we propose an inexpensive system based
on a special case of photometric-stereo (Woodham 1980)
that uses multi-spectral lighting (Hernández et al. 2007;
Woodham 1994) (see Fig. 1) and that is able to capture high-
detailed 3d faces in real-time. Even though the results show
a low frequency shape deformation that is intrinsic to photo-
metric stereo techniques, the algorithm is able to reconstruct
very fine details such as skin porosity and wrinkles. Since
the method is based on multi-spectral photometric-stereo,
the system does not require any time-multiplexing hardware.
However it does require a calibration for the material be-
ing captured. This means that, in practice, the system has to
be calibrated for every different face to be captured. In this
work we present a self-calibration algorithm that allows for
automatic calibration of the setup and greatly simplifies the
whole acquisition pipeline.
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Fig. 1 Acquisition setup. The subject stands in front of three lights of
different frequencies (red, green and blue) and a video camera (left).
The frame captured is shown on the right. There is a 1–1 mapping be-
tween the RGB triplet measured by the camera sensor and the surface
orientation of the scene at each pixel. This leads to a system that can
obtain high-detail 2.5d reconstructions of the subject at each frame and
hence can be used for facial expression acquisition

1.1 Related Work

This paper addresses the problem of deforming shape re-
construction from images and is therefore related to a vast
body of computer vision and computer graphics research.
However, since faces are quite a specific type of deformable
surface, we focus on facial capture systems.

For static faces, range scanner (Cyberware, Inc. 2010)
or light stage setups (Ma et al. 2007) are the state-of-the-
art methods to capture both accurate geometry and de-
tailed texture. As for capturing dynamic faces, several fa-
cial performance capture systems exist using markers (Mova
2010), structured light (Zhang et al. 2004; Zhang and Huang
2006), stereo (Dimensional Imaging 2010; Furukawa and
Ponce 2009), photometric stereo (Hernández et al. 2007;
Woodham 1994) or a combination of several techniques (Ma
et al. 2008). In terms of accuracy and detail, only the meth-
ods with photometric stereo capabilities are able to capture
the fine details of the face. Structured light methods such
as in Zhang et al. (2004), Zhang and Huang (2006) pro-
duce very good low frequency shape, but the need of time-
multiplexing the patterns creates characteristic artifacts in
the shape that need a strong post-processing stage, loos-
ing much of the detail (Weise et al. 2007). Stereo methods
only work well whenever the face has sufficient texture (Fu-
rukawa and Ponce 2009). In this case, the low frequency
of the shape is also very accurate, but due to the nature of
the cue being used, fine detail is very difficult to recover.
This is in contrast to pure photometric stereo techniques,
where the high frequency of the shape is easily recovered,
but the low frequency is very noisy, leading to large scale de-
formations in the shape. Photometric stereo methods come
in two variants: multi-spectral and time-multiplexing. Time-
multiplexing techniques such as in Ma et al. (2008), Kim et
al. (2010) need to cope with misalignment artifacts due to
the fact that frames taken under different illuminations are

also taken at different times. This creates creasing artifacts
due to the scene motion between frames. In Kim et al. (2010)
optic flow is used to align successive frames. Also, since the
effective framerate is divided by the number of lights, more
expensive hardware is needed in order to obtain real-time
capture frame-rates. On the other hand, multi-spectral tech-
niques such as in Hernández et al. (2007), Woodham (1994)
(shown in Fig. 1) do not need any time-multiplexing mecha-
nism and only require a video camera and three lights. These
methods however cannot cope with different materials in the
scene and need to specifically calibrate every time the mate-
rial changes. In the case of human skin, the variation in skin
color among several people requires individual calibration
per person.

In Hernández et al. (2007) the authors propose a sim-
ple scheme for calibrating objects that can be flattened and
placed on a planar board. The system detects a pattern on the
board, from which it can estimate its orientation relative to
the camera. By measuring the RGB response corresponding
to each orientation of the material they directly estimate the
linear mapping. Naturally this method cannot be applied on
human faces.

In Hernández et al. (2008) a two-step process is proposed.
Firstly a mirror is used to independently estimate the three
light directions. The next step involves capturing three se-
quences of the object moving in front of the camera. In each
sequence, only one of the three lights is switched on at a time
and from the pixel intensities measured on the face, the light
direction and RGB response of that light can be estimated.
Even though this process can be applied on human faces and
is very fast, it assumes that the face is Lambertian and fully
monochromatic (i.e. all points have the same chromaticity
value and potentially different intensity values).

The basis of this work was presented in Hernández
and Vogiatzis (2010). In that paper we proposed a self-
calibration method, where, before capturing a face, a short
calibration sequence is obtained in order to re-calibrate the
system specifically for that subject’s facial skin. The method
is based on using a multi-view stereo algorithm to obtain
a low resolution 3d model of a face. This model is then
used as a template to photometrically calibrate the rig for
that particular subject. The method automatically discovers
a subset of points on the face with the same chromaticity
and same intensity value, and hence removes the monochro-
matic assumption of Hernández et al. (2008). However, this
is achieved at the expense of discarding useful calibration
data, namely points on the face with the same chromatic-
ity but differing intensity values. The method typically uses
about 2–4% of points on the template and as a result, is quite
sensitive to the inlier threshold parameter. If the threshold is
set too high or too low, the accuracy of the 3d solution suf-
fers. (Fig. 11) and Sect. 3.2.2

The calibration method proposed in this paper uses the
same low-resolution template as in Hernández and Vogiatzis
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Fig. 2 Acquisition of 3d facial expressions using the method of Hernández et al. (2007) together with the shadow processing of Hernández et al.
(2008). The system was calibrated using the self-calibration technique described in this paper

(2010). However this template is used with a robust 2d ho-
mography estimation scheme that allows us to automatically
discover and use points on the face with the same chromatic-
ity and possibly different intensity values. For the same se-
quences and identical threshold parameters as in Hernández
and Vogiatzis (2010) this new technique uses around 30–
40% of points on the template leading to much stable perfor-
mance with respect to algorithmic parameters. Furthermore,
we are also able to extend the Lambertian model assump-
tions by fitting a simple Phong reflectance model as a nonlin-
ear optimization step, initialized by our robust homography
solution (Sect. 4). This allows us to correct reconstruction
artefacts arising from specularities. Figure 2 shows some 3d
reconstructions of a video sequence successfully calibrated
using the proposed technique.

The rest of the paper will look at the system in more de-
tail.

2 Color Photometric Stereo

In classic three-source photometric stereo we are given three
images of a Lambertian scene, taken from the same view-
point, and illuminated by three distant light sources. The
light sources emit the same light frequency spectrum from
three different non-coplanar directions. The aim of the al-
gorithm is to estimate from these three images the surface
orientation of the object in each pixel.

Let ci(x, y) with i = 1 . . .3 denote the pixel intensity of
pixel (x, y) in the i-th image. We assume that in the i-th im-
age the surface point is illuminated by a distant light source

whose direction is denoted by the vector li and whose spec-
tral distribution is Ei(λ). We also assume that the surface
point absorbs incoming light of various wavelengths accord-
ing to the reflectance function R(x, y,λ). Finally, let the re-
sponse of the camera sensor at each wavelength be given by
S(λ) and n(x, y) the surface local normal. Then the pixel
intensity ci(x, y) is given by

ci(x, y) = l�i n(x, y)

∫
E(λ)R(x, y,λ)S(λ)dλ (1)

The value of this integral is known as the surface albedo ρ

so that (1) becomes a simple dot product

ci = l�i ρn (2)

If we write L = [ l1 l2 l3 ]� and c = [c1 c2 c3 ]� then the
system has exactly one solution for the surface orientation
which is given by

n = L−1c
‖L−1c‖ (3)

Once we compute the normals, the surface can be recovered
by integrating the normal field.

The core of the facial capture algorithm is based on the
technique of color photometric stereo (Petrov 1987). The
key observation is that in an environment where red, green,
and blue light is simultaneously emitted from different di-
rections, a Lambertian surface will reflect each of those col-
ors simultaneously without any mixing of the frequencies.
The quantities of red, green and blue light reflected are a lin-
ear function of the surface normal direction. A color camera
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can measure these quantities from a single RGB image. In
Hernández et al. (2007) it was shown how this idea can be
used to obtain a reconstruction of a deforming object. Be-
cause color photometric stereo is applied on a single image,
one can use it on a video sequence without having to multi-
plex the illumination between frames. In color photometric
stereo each of the three color channels of the CCD array can
be seen as one of the three images of classic photometric
stereo. The pixel intensity of pixel (x, y) for the i-th sensor
is given by

ci(x, y) =
∑
j

l�j n(x, y)

∫
Ej(λ)R(x, y,λ)Si(λ)dλ (4)

Note that now the sensor sensitivity Si and spectral distribu-
tion Ej are different per sensor and per light source respec-
tively. To be able to determine a unique mapping between
RGB values and normal orientation we need to assume a
monochromatic surface. We therefore require that

R(x, y,λ) = ρ(x, y)α(λ) (5)

where ρ(x, y) is the monochromatic albedo of the surface
point and α(λ) is the characteristic chromaticity of the ma-
terial. Let

vij =
∫

Ej(λ)α(λ)Si(λ)dλ (6)

be the ith-row and j th-column element of matrix V. Then
the vector of the three sensor responses at a pixel is given by

c = V · Lρn. (7)

The j th column vector vj of matrix V provides the response
measured by the three sensors when a unit of light from
source j is received by the camera. The normal is obtained
by

n = (V · L)−1c
‖(V · L)−1c‖ (8)

In order to completely calibrate the system, we only need
to estimate the matrix V · L up to an unknown scale as seen
from (8). The next section will focus on how to estimate this
matrix from a simple calibration procedure while in Sect. 4
we will look at how to estimate a more complex nonlinear
mapping that also models specular reflectance.

3 Self-calibration of Color Photometric Stereo System

When reconstructing 3d faces, the calibration method pro-
posed in Hernández et al. (2008) could be used. However,
although the estimation of the light directions li can be very

accurate, the estimation of the color vectors vi is much nois-
ier. This is particularly true when computing the relative
lengths of the vectors, i.e. the relative strengths of each light
when interacting with the skin. The main reason for this is
that (Hernández et al. 2008) uses all points on the face for
calibration, assuming monochromatic reflectance. Since this
assumption is not true in general, the accuracy of the calibra-
tion suffers. In order to avoid these problems, we propose to
use a completely automatic self-calibration process where,
starting from a calibration video sequence, a coarse 3d shape
of the face is computed, and the lights are estimated in a ro-
bust way so that the shape and the calibration matrix explain
the video sequence as well as possible.

The calibration step is based on the fact that, even if faces
are difficult to reconstruct using a passive method such as
multi-view stereo (Seitz et al. 2006), some algorithms can
provide a sufficiently accurate reconstruction so that a ro-
bust light estimation algorithm such as in Hernández et al.
(2008) obtains a good estimate of the light configuration. For
this purpose, a calibration sequence is recorded were the per-
son being captured performs a rigid head motion, such as the
one shown in Fig. 3. Since the expression of the face does
not change during the sequence, rigidity can be used to per-
form standard structure-from-motion (Zisserman and Hart-
ley 2000) in order to obtain both the camera motion (which
is equivalent to the rigid head motion) and a sparse-set of 3d
points (see Fig. 4). The next two sections describe in more
detail the two steps involved in the calibration process: re-
construction of a coarse 3d face model and illumination es-
timation.

3.1 Estimating an Approximate 3d Face

Once the head motion is available, we can compute a dense
model with a multi-view stereo algorithm. It is worth not-
ing that the camera calibration may be inaccurate with a
reprojection error of several pixels. This is due to the fact
that faces have relatively few interest points that can be
well localized and tracked throughout long sequences with
a small reprojection error (mainly the corner of the eyes and
the mouth). Nevertheless, the calibration does not have to
be very accurate as we only need a coarse shape estimate.
We use a standard implementation of a SIFT feature detec-
tor which provides a natural robustness to lighting changes.
These features are then tracked across the sequence using
the 5-point Essential Matrix RANSAC algorithm. No man-
ual adjustment of the tracks was necessary. The method of
(Lin et al. 2010) presents an alternative for obtaining the
coarse 3d shape using a combination of silhouette and stereo
constraints from just 5 images. However it is not clear if the
shape obtained would have the required level of accuracy.

Figure 5 top shows the 3d reconstruction obtained with
(Hernández and Schmitt 2004). Note that the shape does
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Fig. 3 Face calibration sequence under a three-source color photometric setup

Fig. 4 Sparse set of 3d points after using a structure-from-motion al-
gorithm on the sequence of Fig. 3. From left to right, the 3d points are
shown from three different viewpoints roughly at −45 degrees, 0 de-
grees, and 45 degrees

Fig. 5 (Top) Coarse shape obtained with the multi-view stereo algo-
rithm (Hernández and Schmitt 2004) on the sequence of Fig. 3. (Bot-
tom) Refined shape after successful light estimation and photometric
stereo evolution using the scheme of Hernández et al. (2008)

not contain much detail and only the low frequencies of the
shape are correct. However, as shown in the following sec-
tion, this coarse shape is sufficient to estimate the lighting

using (Hernández et al. 2008) as only 8 doff of the matrix
V · L have to be estimated.

3.2 Robust Estimation of Light Sources from a Coarse
Shape

The estimation of the calibration matrix V · L was inspired
by the photometric calibration scheme described in Hernán-
dez et al. (2008). In that work, an initial coarse 3d shape is
obtained from silhouettes, while in our case the initial shape
is obtained from a multi-view stereo algorithm. We now de-
scribe the light estimation algorithm in our particular frame-
work.

Calibrating our color photometric stereo setup involves
estimating the mapping from surface orientation n to the
RGB triplet c measured in the camera sensor. To perform
this estimation we need a set of rgb/normal pairs (c,n) in
order to fit some type of parametric representation of this
mapping. This set of correspondences is readily provided by
our approximate 3d face model. The assumption here is that
despite its inaccuracies this model will contain enough cor-
rect correspondences to accurately fix the parameters of the
mapping. The only question that remains is how to robustly
fit the mapping to the correct points only while disregard-
ing possibly inaccurate points. One of the simplest and most
effective robust model fitting techniques is RANSAC (Fis-
chler and Bolles 1981) which works by randomly sampling
minimal subsets of the set of correspondences. For each such
subset the corresponding mapping is estimated and then all
other correspondences are tested to see if they conform with
it. At the end the algorithm returns the mapping with the
largest number of correspondences in agreement. RANSAC
based estimation is widely used for structure-from-motion
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problems where it has been known to find the right model in
datasets with a large percentage of outlier correspondences.

In our problem, if the coarse shape contains enough cor-
rect points or inliers, then repeatedly sampling a subset of
M random pairs (c,n) on the shape will give a high proba-
bility that at least one of those subsets consists of M inliers.
At the same time, one can expect that the outliers do not
generate a consensus in favor of any particular illumination
model while the inliers do so in favor of the correct model.
This observation motivated (Hernández et al. 2008) to use a
robust RANSAC scheme (Fischler and Bolles 1981) to sepa-
rate inliers from outliers and estimate the light matrix. The
scheme can be summarized as follows:

1. Pick M random points on the coarse 3d model and, from
their RGB intensities and normals, estimate mapping hy-
pothesis.

2. Every point on the surface xm will now vote for this hy-
pothesis if its predicted image intensities are within a
given threshold τ of the observed image intensities cm

where τ allows for quantization errors, image noise, etc.
We use the L2 norm to calculate The distance between
the predicted and observed rgb triplets.

3. Repeat 1 and 2 a set number of times always keeping the
mapping hypothesis with the largest number of votes.

In practice, since we have a calibrated video sequence and
not just a single frame, the algorithm uses all the frames in
order to vote for a light hypothesis. This heavily increases
the amount of data available. In all experiment reported here
we used 1000 RANSAC iterations. However in almost all
experiments convergence was achieved with 10–100 itera-
tions.

Depending on how the mapping between normals and
rgb pixel intensities is formulated and how the inlier set is
defined, one can have two variants of this RANSAC algo-
rithm. These two variants involve minimal subsets of three
and four correspondences respectively. The advantage of the
first variant (3-point algorithm) is that due to the smaller
minimal subset it can potentially be faster to converge to the
right solution. On the other hand the second variant (4-point
algorithm) typically admits a much wider set of correspon-
dences as inliers. Both variants are discussed below.

3.2.1 Three Point Algorithm

If we are given three points xa,xb,xc with an unknown but
equal albedo ρ, their (non co-planar) normals na,nb,nc ,
and the corresponding collected RGB intensities ca, cb, cc ,
we can uniquely determine the matrix ρV · L that describes
the mapping from normals to rgb triplets as follows:

ρV · L = [nanbnc]−1[cacbcc]. (9)

It is worth noting that, even though we are estimating the
simplest illumination model, i.e. the 3 × 3 matrix V · L, the

Fig. 6 Inliers for 3-point algorithm as a function of direction of the
three rows of V · L. This image refers to the sequence of Fig. 3 using
the coarse shape of Fig. 5 (top) and τ = 4. The image intensities are
quantized in the range from 0 to 255

algorithm could easily be extended to estimate a first order
spherical harmonic illumination (Basri et al. 2007), i.e. a
3 × 4 matrix modeling three distant light sources plus ambi-
ent light. The RANSAC algorithm would be exactly the same,
except that now it would need to pick a minimum of four
points instead of three to build an illumination hypothesis.
However, in all the experiments ambient light was negligi-
ble, so this extension was not necessary.

We show in Fig. 6 the number of inliers per light direc-
tion, i.e. per row of V · L optimized for the best scale. The
space that RANSAC explores in this example is well behaved,
with a clearly defined global optimum.

We show in the top row of Fig. 7 the impact of the thresh-
old τ on the number of inliers (in white). We can distinguish
how the mouth and the eyes are never selected as inliers for
two different reasons. While the mouth is an outlier because
of its different monochromatic intensity (different shade of
red than rest of the face), the eyes are outliers because they
moved during the rigid motion capture, so the reconstruc-
tion in that region is not correct. However we can further
observe that even in the rest of the face the algorithm only
picks a small percentage of points as inliers.

The biggest drawback of the 3-point algorithm is that
the set of inliers that validate a particular hypothesis is a
set of points with equal monochromatic intensity. As one
can imagine, in datasets with significant variability in inten-
sity, the number of points that have any particular intensity
will be small. This means that in such cases the normal to
rgb mapping estimation will be less robust as it is based on
smaller datasets. However if the dataset is largely of constant
monochromatic intensity then this approach may be faster to
converge than the 4-point variant described below.

3.2.2 Four Point Algorithm

The key to describing the four point algorithm is noticing
that the normal-to-rgb mapping of (7) is a R

3 → R
3 map

where the scale of one of the two vectors is unknown. It
also happens to be the case however that this scale is ac-
tually not important for photometric stereo since we are
really interested in the unit normal. If instead of the Eu-
clidean 3d spaces of (c1, c2, c3)

T and ρ(n1, n2, n3)
T we
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Fig. 7 Distribution of inliers (in white) as a function of the threshold
τ . From left to right, τ = 1, τ = 2, τ = 3, τ = 4, τ = 5. The image in-
tensities are quantized in the range from 0 to 255. The first row shows

the inliers for the 3 pt algorithm while the second row is the same for
the 4 pt algorithm. This experiment used the calibration sequence of
Fig. 3

Fig. 8 Distribution of inliers (in white) for τ = 2. From left to right:
3 pt algorithm, 4 pt algorithm, Phong model. Note that the greasy fore-
head is classified as an outlier (black) in both 3 pt and 4 pt algorithms.
After optimization of the Phong model parameters, the forehead points
fall within the inlier threshold

consider the projective 2d spaces of (c1/c3, c2/c3)
T and

(n1/n3, n2/n3)
T then the mapping of (7) is just P

2 → P
2.

This type of map is also known as a 2d homography (Zisser-
man and Hartley 2000) and is a very common image coor-
dinate transformation induced by acquiring two images of a
plane or when the camera motion between the two frames is
a pure rotation. In our case the two spaces are not image co-
ordinates. The first space is loosely equivalent to the hue and
saturation color coordinates of the rgb triplet (c1, c2, c3)

T

while the second space is the coordinates of the local sur-
face gradient vector ∇z = ( ∂z

∂x
, ∂z

∂y
)T . Our homography is

described by the matrix V · L. We know that a 2d homog-
raphy is completely determined if we have four correspon-
dences between the two spaces. This leads naturally to a
RANSAC algorithm that uses a minimal set of four corre-
spondences. In fact this algorithm is identical to the well
known homography estimation algorithm that is used in SfM
systems (Zisserman and Hartley 2000).

The benefit of this approach is that the inlier set can be
virtually all points on the coarse 3d face model that have cor-
rect geometry (correct position and surface orientation) and
satisfy the monochromatic assumption. In particular, as op-
posed to the 3-point algorithm we are allowed to have inlier

sets that have varying monochromatic intensity (i.e. brighter
or darker points) as long they have the same chromaticity
(hue and saturation). In sequences with significant variation
in intensity this will lead to significantly larger inliers sets
and improved robustness compared to the 3-point algorithm.

A potential drawback to using a RANSAC scheme that
requires four samples instead of three in the minimal set is
the fact that such a scheme might require more iterations in
order to identify the correct solution. At the same time the
4-point scheme has a larger inlier set which decreases the
number of iterations required. In fact it is straightforward to
establish the necessary and sufficient condition under which
the 4-point scheme requires less RANSAC iterations (on av-
erage) to find the solution. One can show (e.g. see Zisser-
man and Hartley 2000) that if π is the percentage of inliers
among the data-points, n is the size of the minimal set, k

is the number of RANSAC iterations and p is the probabil-
ity that the correct hypothesis is found, then the following
holds:

1 − p = (1 − πn)k (10)

Let π3 and π4 be the percentages of inliers under the 3-point
and 4-point schemes respectively. In general we can expect
that π4 > π3. By applying (10) to the 3-point and 4-point
case, we can establish that the 4-point scheme requires less
iterations than the 3-point scheme for the same probability
of finding the solution if and only if π4 > π

3/4
3 .

In Fig. 10 we show the effect of the threshold parame-
ter τ on the inliers picked by the 3 and 4 point algorithms.
We have run both schemes on the calibration data of se-
quence 3 and plot the number of inliers for the same thresh-
old value. We notice that the 4 point algorithm designates a
much higher percentage of points as inliers than the 3 point
algorithm.
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Fig. 9 Face calibration sequence under a three-source color photometric setup

Fig. 10 (Color online) This graph plots for several different threshold
values, the percentage of inliers used by the 3 point and 4 point algo-
rithms (red and blue curves respectively) when applied to the sequence
of Fig. 3. The 4 point variant is able to treat many more points on the
template as inliers

This is also shown in the bottom of Fig. 7 where we show
these inliers on the coarse face model. Note that now parts
of the lips have been designated as inliers. However the eyes
are still never picked due to their deformation as explained
above. Finally the greasy forehead and tip of the nose are
never picked because they exhibit non-Lambertian, specular
effects. The following section outlines how this Lambertian
reflectance assumption can be removed.

To get a better understanding of the numerical properties
of the algorithm we also conducted an experiment with syn-
thetically generated data of a textured shiny sphere (shown
in the left of Fig. 11). In this case accurate ground truth of
the scene illumination is known so we can perform some
sensitivity analysis and comparison of the 3 point and 4
point variants. To that end we corrupted the synthesized im-
age of the sphere with noise (zero mean and standard devi-
ation equal to 3 intensity levels) and measured the accuracy
of the obtained calibrations under both schemes. Figure 11
plots the error in the calibration for both schemes as we vary
the threshold τ . The error was measured as the mean angle

Fig. 11 (Color online) Sensitivity analysis of 3 pt and 4 pt algorithms.
We used both RANSAC variants to estimate a light matrix in the image
on the left. A zero-mean Gaussian noise (σ = 3) was added to all three
channels of the image and the accuracy of the estimate (measured in
degrees between light directions) is shown. Each experiment was re-
peated 20 times. The blue curves are the mean and std. deviations of
the accuracy of the 4 pt variant while the red curve is the 3pt variant.
The 4 point RANSAC scheme seems to be much more tolerant to noise
levels. This is due to the fact that it uses a much wider pool of inliers
than its 3pt counterpart

between rows of the estimated and ground truth matrix V ·L.
All experiments were repeated 20 times and we also show
2-standard-deviation intervals for the error values. Our find-
ings confirm that the 4 point algorithm is able to offer better
estimates across all threshold values. The ‘smile’ shape of
these plots is due to the fact that if the threshold is too small,
the set of inliers is too small and the estimation is noisy with
high error. On the other hand if the threshold is too big then
some outliers are entering the estimation which again in-
creases the error. The 4 point algorithm also appears to be
much flatter which means that it is more stable with regards
to choosing a threshold value τ .

Finally in Fig. 12 we used different levels of noise to con-
taminate the synthetic sphere image and we are showing the
number of inliers around the ground truth value for the 3 and
4 point algorithms. The x and y coordinates of the images
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Fig. 12 Effect of noise in search space. For the synthetic data used in
Fig. 11 we render the inliers corresponding to 3 pt algorithm (1st row)
and 4 pt algorithm (2nd row) as a function of a displacement of the x

and y coordinates of the last row of V · L. The middle point in each
image corresponds to zero displacement from the ground truth value of

V · L. For all experiments we used a threshold value of τ = 10. From
left to right are different noise levels (std. dev. of noise is 1, 2, 3 and
4 graylevels respectively). Note that the shape of the search space be-
comes much less smooth in the 3pt case, in the presence of some image
noise

shown correspond to a displacement of the x and y coor-
dinates of the third row of V · L, so the (0,0) corresponds
to the actual ground truth calibration. We observe that the
shape of the cost function explored by RANSAC becomes
progressively less smooth for the 3 point algorithm (Fig. 12
top row). The 4 point variant however has a much more reg-
ular shape with a well defined maximum even at high levels
of noise (Fig. 12, bottom row).

4 Fitting a Specular Reflectance Model

The RANSAC scheme described in the previous section, in
both its 3-point and 4-point variants is based on Lambertian
reflectance assumptions. More specifically it is assumed that
there is a set of points on the coarse 3d face model, whose re-
flectance is purely diffuse with no specular component. This
assumption is justified in cases where (a) the face is truly
perfectly diffuse (e.g. through the use of special make-up)
or (b) where the face is so shiny that the specularity is very
localized. In this latter case only a small subset of the points
will have been contaminated and one can still calibrate the
system using the rest of the 3d shape. However there are
cases where the specular reflectance extends to a large range
of viewing angles, producing a big specularity on the im-
ages. Such an example can be seen in Fig. 8 (middle) where
we show the inliers of the 4-point algorithm on the face tem-
plate. Notice that there were no inliers registered in the fore-
head because due to skin grease that area had a significant
specular reflectance component. In a video sequence of that
face we can expect to have a significant number of pixels
corrupted by specularities.

Clearly, if we use the mapping estimated by RANSAC
on these pixels, the surface orientation we obtain would be
incorrect. When we then try to integrate these orientations to

Fig. 13 Color photometric stereo using the Phong model. We used the
calibration sequence of Fig. 3 to fit the parameters of a Phong model.
This was then used to reconstruct a single frame of the sequence. The
first two images show what happens if we just use the Lambertian
mapping estimated in Sect. 3.2 while the second two images show
the reconstruction under the Phong model described in Sect. 4. No-
tice the characteristic ‘bulging’ artefact that appears when specularities
are treated with the Lambertian model. These artefacts are eliminated
when the Phong model is used

obtain 3d shape we will observe characteristic ‘bulging’ ar-
tifacts. Such an example is shown in the first two images of
Fig. 13 where the forehead seems to be slightly protruding.
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To remedy this problem we would need to fit a more com-
plex reflectance model that includes specular reflectance.
In this work we experimented with fitting a simple Phong
model. Even though this is a very simplistic model that has
well known limitations, it was adequate for the purposes
of photometric stereo reconstruction. The Phong reflectance
model for a scene with three color lights and three pixel sen-
sors is given by

c = cdiff + cspec (11)

where the diffuse component is as previously

cdiff = ρV · Ln (12)

while the specular component is given by

c
spec
i (x, y) =

∑
j

[
lTj (2nnT − I )v

]α

×
∫

Ej(λ)Rspec(x, y,λ)Si(λ) dλ

In this equation the sensor sensitivity S and light source
spectral distribution E are the same as previously. However
in general the material will have a different reflectance func-
tion for the specular component given by Rspec. Parameter
α is known as the specular hardness and it controls the size
of the specular lobe. A large value corresponds to a narrow
specular lobe while a small value makes it wide. The vector
v is the viewpoint direction while vector (2nnT − I )v is the
specular direction.

To make the problem tractable, as previously, we will as-
sume monochromaticity. For the same reasons, this time we
will also require the specular monochromatic albedo of the
material to be constant. If the specular albedo was allowed
to vary on the surface, the mapping between normal and rgb
triplet would no longer be invertible. This is because there
would be four unknowns per pixel (two for direction and two
for the albedos) and only three constraints from the three
sensors). The assumption appears to be validated in prac-
tice. In vector form, the specular reflection component can
be written as

cspec = W
[
L(2nnT − I )v

]α (13)

where W is a 3 × 3 matrix and α is a scalar parameter and
both of which are constant for all pixels.

Having obtained an estimate of the Lambertian re-
flectance model V · L as well as an inlier/outlier classifi-
cation for each point using RANSAC (see previous section)
we now fit the specular model described above. We need to
estimate matrices W, and L as well as α. The matrix V · L
is assumed to be given by our previous RANSAC estima-
tion so the value of V is automatic given L. Also, we need
to obtain the diffuse albedo ρ( ) for each point on the face

template model. Our approach is to minimize the L2 norm
of the differences between observed rgb triplets and the ones
synthesized through the model:

min
α,L,W,ρ

∑
(x,y)

‖c − ρV · Ln + W[L(2nnT − I )v]α‖2 (14)

Since we already have identified points of the template that
adhere to the Lambertian reflectance, our cost function need
only be optimized for the outlier points. It is worth pointing
out that given a particular choice of light direction matrix L
and hardness parameter α the rest of the unknown variables
can be obtained through solving a linear least squares prob-
lem. This makes the optimization process considerably more
efficient. We apply a simple nonlinear optimization scheme
(in our experiments we used Matlab’s lsqnonlin func-
tion). We initialize L to the normalized columns of V · L
while α is typically initialized to 1.

Figure 13 shows a 3d face model obtained by a Phong
model whose parameters were estimated from the template
of Fig. 5. To invert the Phong reflectance model per pixel
of the input image we minimize the difference between the
synthesized and observed rgb triplets for each pixel. The
minimization is performed with respect to each pixel’s sur-
face orientation and diffuse albedo:

min
n,ρ

‖c − ρV · Ln + W[L(2nnT − I )v]α‖2 (15)

where the reflectance parameters L,W, α are those obtained
from the previous calibration step. Once again, for any given
surface orientation n the diffuse albedo is trivially computed
via least squares so the search can be limited to n. To opti-
mize the cost with respect to n we sample 64 locations on
the unit sphere and we use the location with the minimum
cost to initialize a gradient descent optimization. In our ex-
periments this simple strategy never failed to converge to the
global optimum.

After estimating the parameters of the reflectance model
and inverting the model to get surface orientations for each
input image, we can optionally refine the initial coarse ge-
ometry with the photometric cue by evolving the surface
using a scheme such as Nehab et al. (2005) or Hernández
et al. (2008). We show in Fig. 5 bottom how, by merging
the multi-view stereo cue and the photometric stereo cue,
the low frequency shape of the multi-view stereo solution
is kept, while the high frequency shape of the photometric
stereo cue is “added” creating a very detailed and realistic
static reconstruction of the face.

5 Experimental Results

We have run the same algorithm on a second sequence
shown in Fig. 9. After structure-from-motion, the camera
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motion and the video sequence are fed into the multi-view
stereo algorithm in order to produce a coarse shape of the
face shown in Fig. 15 top. The sparse set of 3d points (shown
in Fig. 14) is only used to define a rough bounding box in
order to speed-up the multi-view stereo algorithm. Once the
coarse shape is computed, we can run the light calibration

Fig. 14 Sparse set of 3d points after using a structure-from-motion al-
gorithm on the sequence of Fig. 9. From left to right, the 3d points are
shown from three different viewpoints roughly at −45 degrees, 0 de-
grees, and 45 degrees

Fig. 15 (Top) Coarse shape obtained with the multi-view stereo algo-
rithm (Hernández and Schmitt 2004) on the sequence of Fig. 9. (Bot-
tom) Refined shape after successful light estimation and photometric
stereo evolution using the scheme of Hernández et al. (2008)

step described in Sect. 3.2, giving the light estimates shown
in Fig. 16. Again, in order to have an idea of how good the
estimate is, we can visualize the distribution of inliers w.r.t
the RANSAC threshold τ (see Fig. 17) and we can also refine
the coarse shape in order to obtain a high resolution static
face capture (see Fig. 15, bottom).

Once the calibration step is completed, we can recon-
struct video footage of that same person under the same
setup using (Hernández et al. 2007) (see Fig. 18). Note that,
wherever the constant chromaticity assumption is not veri-
fied, e.g. in the eyes or inside the mouths, the normal estima-
tion suffers from a bas-relief ambiguity deformation (Bel-
humeur et al. 1999). However the impact of such ambiguity
in the final shape depends on the size of the region. If the
region is small compared to the rest of the image, as it is the
case with the lips, the low frequency of the shape will not be
very distorted since it is computed as an integration process
of the entire image. As for the high frequency, it will bump
the surface in a realistic way even if, over all, the normals
are distorted.

As an improvement to Hernández et al. (2007), we use
a real-time implementation of the algorithm. Since the re-
construction algorithm itself is just a per-pixel 3 × 3 matrix-

Fig. 16 Inliers for 3-point algorithm as a function of direction of the
three rows of V · L. This image refers to the sequence of Fig. 9 using
the coarse shape of Fig. 15 (top) and τ = 4. The image intensities are
quantized in the range from 0 to 255

Fig. 17 Distribution of inliers (in white) as a function of the thresh-
old τ . From left to right, τ = 1, τ = 2, τ = 3, τ = 4, τ = 5. The image
intensities are quantized in the range from 0 to 255. The first row shows

the inliers for the 3 pt algorithm while the second row is the same for
the 4 pt algorithm. This experiment used the calibration sequence of
Fig. 9



102 Int J Comput Vis (2012) 97:91–103

Fig. 18 Acquisition of 3d facial expressions using the method of Hernández et al. (2007). The system was calibrated using the self-calibration
technique described in this paper

vector multiplication followed by a Poisson integration step
(Frankot and Chellappa 1988), this can be achieved real-
time at 60 Hz by using an FFT-based integration imple-
mented on a gpu (with the CUDA libraries).

6 Conclusion

We have presented a self-calibration method for monocu-
lar 3d face capture using a color photometric stereo frame-

work. The method is based on a preliminary video capture of
the person where a rigid motion is performed with a neutral
facial expression. This enables us to use a structure-from-
motion algorithm followed by a multi-view stereo algorithm
in order to reconstruct a coarse 3d shape of the static face.
The same calibration video can then be used together with
the shape in order to robustly estimate the color response of
the face under the photometric stereo setup. Once the system
is calibrated, reconstruction of 3d faces can be achieved in a
live real-time manner.
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The main weakness of the proposed reconstruction
framework is the low frequency noise in the 3d shape, which
is characteristic of photometric stereo algorithms. A promis-
ing research direction is to combine this technique with
other cues such as MVS (Furukawa and Ponce 2009) that
can constrain the low-frequency of the shape.
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