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Abstract. We present a probabilistic, online, depth map fusion frame-
work, whose generative model for the sensor measurement process accu-
rately incorporates both long-range visibility constraints and a spatially
varying, probabilistic outlier model. In addition, we propose an inference
algorithm that updates the state variables of this model in linear time
each frame. Our detailed evaluation compares our approach against sev-
eral others, demonstrating and explaining the improvements that this
model offers, as well as highlighting a problem with all current methods:
systemic bias.

1 Introduction

Today a plethora of depth measuring technologies are available: traditional and
active stereo, sonar, time-of-flight cameras and laser scanners, to name but a
few. They all measure the distance from the sensor to the closest surface along
a ray, or grid of rays, but have varying noise, outlier, speed and resolution char-
acteristics. These sensors are being used in an ever growing number of vision
applications, such as vision for vehicles and scene reconstruction, where mea-
surements are made from many different locations (here assumed known), some-
times using multiple sensor types; usually an estimate of scene geometry which
fuses all these measurements is required.

The majority of papers on this subject—depth map fusion—fall into one
of two categories: online methods which receive depth measurements over time
and output the current depth estimate at each time step, and offline methods
which fuse a set of depth maps to give a single geometry estimate. This paper
falls into the former category. Our contributions are to accurately incorporate
both visibility constraints and a variable outlier ratio into the model, while
maintaining a complexity linear in the number of state variables.

Visibility constraints. Since the sensors considered see only the first sur-
face along a ray, their measurements provide additional clues as to the location
of surfaces: given the surface that generated the measurement, there can be no
surface along the ray from that point towards the sensor (the “free space” con-
straint), but along the ray from that point away from the sensor there may be
further surfaces. This implies a dependency between the likelihood of a measure-
ment at one point along a sensor ray and the occupancy of all points along the
ray; any model which assumes independence does not, therefore, exploit these
constraints. When measurements from different locations are considered, these
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dependencies overlap to form a complex Markov Random Field (MRF) with
long-range interactions.

The first methods to consider visibility were offline stereo methods, whose
photoconsistency costs can be loosely re-interpreted as depth measurement data
likelihoods. Some model pixel depths in an MRF, determining visibility from
those depths [1, 2], a general approach that has since been very popular, and
even made real-time [3]. Others model voxel occupancies, initially considering
visibility by visiting unoccluded regions of space first [4], but more recently using
complex 3D MRF formulations [5, 6], computing depth as a 3D segmentation
between visible and invisible points [5], or computing probabilistic occupancies
using long-range ray cliques to model visibility [6]. A drawback to all these
offline methods, which treat every input frame equally, is that the MRF structure
becomes more complex with larger sets of frames, leading to slower inference.
Avoiding this complexity is therefore key for online methods.

Most early online methods, referred to as inverse sensor models [7, 8] in the
robotics literature, build on the occupancy grid of Elfes & Matthies [7], storing
a grid/volume of occupancy probabilities, but without any inter-dependency of
variables along each ray. A recent evaluation [9] of these approaches highlights
Konolige’s [8], which incorporates some reasoning on visibility, but based on
measurements rather than current occupancies. Forward sensor models [10–13]
are generative models of the sensor measurement process, which naturally in-
corporate visibility constraints, but all previous such models have deficiencies.
Thrun [13] uses the iterative EM algorithm to update the latent correspondence
of measurement to variable, making the method slow. Pathak et al . [12] present
a closed-form update to probabilities of visibility, and assume that these directly
determine occupancy probabilities. As a result, their model has no notion of oc-
cluded surfaces; the occupancy updates include an ad-hoc rule to overcome this.
Other methods forgo the dependence of prior visibility probability on occupan-
cies along the ray [10, 11], instead using either an ad-hoc distribution based on
the occupancy at each point [10] or a delta function on the measurement [11].

Another approach to online depth fusion is to compute a weighted sum of
truncated signed distance functions (TSDFs) over depth measurements [14–16],
usually inferring depth at the zero-isocontour of the resulting volume [14, 15].
This considers visibility implicitly, by downweighting the distance function be-
yond the surface; indeed, it has been shown to be equivalent to calculating
log-odds of visibility assuming a logistic sensor noise model [5].

Robust measurement models. Methods using noisy and cluttered data,
such as sonar or stereo measurements, require robust measurement models. Many
are able to use any given measurement model, e.g . [12, 13], such as those learned
from ground truth data; [5] uses a Gaussian plus uniform model. The limitation
of these methods is that the exact measurement model must be given prior
to inference. Fusing stereo matches, whose clutter characteristics are texture-
dependent, hence vary spatially, Vogiatzis et al . [17] simultaneously infer depth
and an unknown outlier ratio parameter per pixel, using a variational scheme,
in a framework naturally limited to the multi-view stereo domain.
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Geometry priors. Many stereo and depth fusion methods use geometry
priors in their inference, e.g . [5, 11, 2, 6, 1, 16], encouraging surface smoothness.
Here we ignore geometry likelihood, focusing purely on data fusion. We note,
however, that a probabilistic output (which we produce) can easily be combined
with a geometry prior in a second inference stage.

In the next section we present a new, probabilistic framework for the fusion
of depth maps, using a generative model of the sensor measurements (a for-
ward sensor model), within an occupancy volume. Whilst very similar to that
of Pathak et al . [12], it deals probabilistically with occluded surfaces, and also
allows us to associate a different and unknown measurement model per voxel,
similar to [17]. These unknown measurement models are inferred in parallel with
the depth fusion, enabling our method to operate robustly under dramatically
different, temporally and even spatially varying, measurement conditions. In §3
we evaluate the improvements resulting from this new model against a range of
other methods.

2 A probabilistic approach

Considering, for the time being, a single sensor ray, our model assumes that
sensor measurements are generated as a function of the occupancy of points
along the ray and the noise properties of the measurement process. In particular,
denoting the binary state of occupancy ofN discrete points ordered along the ray,
starting nearest to the sensor, as x = {xi}Ni=1, xi ∈ {0, 1}, we assume, according
to the visibility constraint, that a measurement is generated by the first occupied
point along the ray (an inlier or true positive), or alternatively by an outlier
process which generates false positives. Given the visible point (the true surface),
whose index we denote by v, the likelihood of a measurement, y, of the point
is given by the measurement noise distribution Mv(y). If, on the other hand,
the measurement is an outlier, its likelihood is given by a clutter distribution,
C(y). Applying these assumptions and distributions, the total likelihood of a
measurement, given a state x and marginalizing over the latent variable v, is

p(y|x,ω) =

N+1∑
v=1

p(y|v, ωv)p(v|x), (1)

p(y|v, ω) = ω · C(y) + (1− ω) · Mv(y), (2)

p(v|x) = xv

v−1∏
i=1

(1− xi), (3)

where ω = {ωi}Ni=1, ωi ∈ [0, 1] is a set of outlier ratios, which can also be a
single variable or given constant for the sensor (ωi = ω)—we investigate all
three scenarios here. Note that we have integrated over an additional visible
surface index, v = N+1, which represents the case that no visible surface exists,
implying xN+1 = 1 and ωN+1 = 1, since any measurement must be an outlier
in this case.
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In reality we are given y, as well as a prior distribution, and wish to find
a posterior probability over x and ω. Applying Bayes’ rule and choosing an
appropriate form of prior, we have

p(x,ω|y) =
p(y|x,ω)p(x)p(ω)

p(y)
, p(y) = constant, (4)

p(x) =

N∏
i=1

p(xi|γi), p(x|γ) = γx(1− γ)1−x, (5)

p(ω) =

N∏
i=1

p(ωi|αi, βi), p(ω|α, β) =
ωα−1(1− ω)β−1

B(α, β)
, (6)

where B(α, β) =
∫ 1

0
uα−1(1 − u)β−1 du. The prior, consisting of a product of

binomial and beta distributions, conveniently exhibits independence over all
variables. However, the data likelihood, in particular the visibility constraint
of equation (3), makes the variables in x fully inter-dependent in the posterior.

2.1 A factored approximation

It is impractical to maintain the inter-dependence of variables in x, due to the
large state of size 2N for each ray, and also the MRF complexities which result
from intersecting rays. As such, we approximate our posterior with a distribu-
tion, q(x,ω), taking the same form as the prior in equations (5) & (6), but with
parameters denoted γ′i, etc. This factorization assumes that the state variables
are independent, simultaneously reducing the state to size N per ray and avoid-
ing an accumulation of highly connected dependencies. In addition, the state
update and reparameterization described in §2.2 are made very simple.

It is common to compute such factored approximations by minimizing the
KL-divergence between p(x,ω|y) and q(x,ω), denoted KL(q||p), or alternatively
minimizing KL(p||q). Here the latter optimization is significantly easier; since

q(x,ω) =
∏N
i=1 qi(xi)

∏N
j=1 qj(ωj) is a member of the exponential family, thus:

qi(xi) = γ′i
xi(1− γ′i)1−xi = exp (xi(ln γ

′
i − ln(1− γ′i)) + ln(1− γ′i)) , (7)

qj(ωj) ∝ ω
α′

j−1
j (1− ωj)β

′
j−1 = exp

(
(α′j − 1) lnωj + (β′j − 1) ln(1− ωj)

)
, (8)

it is a standard result [18, p.505] that minimal KL(p||q) is achieved matching
the expected sufficient statistics, thus:

Eq(x,ω)[xi] = Ep(x,ω|y)[xi], ∀i ∈ {1, .., N}, (9)

Eq(x,ω)[lnωi] = Ep(x,ω|y)[lnωi], ∀i ∈ {1, .., N}, (10)

Eq(x,ω)[ln(1− ωi)] = Ep(x,ω|y)[ln(1− ωi)], ∀i ∈ {1, .., N}. (11)

Computing γ′
i Ordinarily, computing each expectation of equation (9) would

require an integration over the 2N−1 states of the other variables in x. However,
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since the data likelihood term (equation (1)) depends on x only through v, it
can be reduced to the N + 1 possible values of v by marginalizing out x: p(v) =∑

x p(v|x)p(x). Given the visibility constraint (equation (3)), which implies xi =
0,∀i < v, xv = 1 and xi ∈ {0, 1},∀i > v, and noting that the prior likelihoods
of xi,∀i > v integrate to one,

p(v) =

{
γv
∏v−1
i=1 (1− γi) if v ∈ {1, .., N},∏N

i=1(1− γi) if v = N + 1.
(12)

The posterior probability of v correctly indexing the visible surface is therefore

p(v|y) =
(
ωv · C(y) + (1− ωv) · Mv(y)

)
· p(v)

p(y)
, (13)

for which we can now compute the constant, p(y), as

p(y) =

N+1∑
v=1

p(y|v, ωv) · p(v). (14)

When ωv is a variable (not given), it is computed as the expected value under
its prior: Ep(ω)[ωv] = αv/(αv+βv). Now marginalizing out v, noting that xi=1 if
i=v and xi=1 with prior likelihood γi if v<i, otherwise xi=0, the expectation
is

γ′i = Ep(x,ω|y)[xi] = p(v=i|y)︸ ︷︷ ︸
v=i

+ γi
∑i−1
j=1 p(v=j|y)︸ ︷︷ ︸

v<i

. (15)

Computing α′
i and β′

i Since we know of no closed form solution to the simul-
taneous equations (10) & (11), and it has been shown [19, p.29] that preserving
the two moments, Eq(x,ω)[ωi] = Ep(x,ω|y)[ωi] and Eq(x,ω)[ω

2
i ] = Ep(x,ω|y)[ω2

i ], is a
good approximation with a closed form solution, we choose to solve this system
instead. The system is characterized by the two pairs of equations to be equated:

Eq(x,ω)[ωi] =
α′i

α′i + β′i
, Eq(x,ω)[ω

2
i ] =

α′i(α
′
i + 1)

(α′i + β′i)(α
′
i + β′i + 1)

(16)

p(ωi|y) =
∑
x,ω/i

p(x,ω|y) = (Si + Ti · ωi)︸ ︷︷ ︸
polynomial P

ωαi−1
i (1− ωi)βi−1

B(αi, βi)
, (17)

Ep(x,ω|y)[ωi] =

∫ 1

0

p(ωi|y)ωi dωi =

(
Si + Ti

αi + 1

αi + βi + 1

)
αi

αi + βi
, (18)

Ep(x,ω|y)[ω2
i ] =

(
Si + Ti

αi + 2

αi + βi + 2

)
αi(αi + 1)

(αi + βi)(αi + βi + 1)
. (19)

The values of Si and Ti depend on whether there is an outlier ratio per occupancy
variable, or just a single one for the sensor. In the former case

Si = 1− Ti · Ep(ω)[ωi], Ti =
(
C(y)−Mi(y)

)
· p(v=i)

p(y)
, (20)
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whilst in the latter case

S = 1− T · Ep(ω)[ω], T =

N∑
i=1

(
C(y)−Mi(y)

)
· p(v=i)

p(y)
. (21)

However, with just a single outlier ratio, when considering multi-ray sensors the
polynomial P in equation (17) becomes much higher order as the ray posteriors
are multiplied together. To avoid a costly computation in this case, we compute
α′ and β′ for each ray independently, then average them across all the rays.

2.2 Online fusion

In online approaches, sensor measurements, yt, are taken at each time step, t,
and a current geometry estimate based on all previous measurements is output.
We make the standard first-order independence assumptions which imply

p(xt,ωt|yt, .., y1) =
p(yt|xt,ωt)

p(yt)
p(xt,ωt|xt−1,ωt−1)p(xt−1,ωt−1|yt−1, .., y1),

(22)
which, along with x being discrete, means ours is a hidden Markov model. Most
terms in this equation are familiar from the previous section; e.g . p(yt|xt,ωt)
is the data likelihood given by equation (1), and p(xt−1,ωt−1|yt−1, .., y1) is the
posterior from the previous time step, whose factored approximation we com-
pute. The new term, p(xt,ωt|xt−1,ωt−1), effectively computes the prior for time
t from the posterior computed at time t−1; this can account for dynamic scenes.

Finally consider an N ×H ×W occupancy grid. This grid can be in the
coordinate frame of the current input depth map (s.t. the grid rows and sensor
rays are colinear), or alternatively fixed in space, as in [15]. We use the former
approach, which, if the sensor moves (or multiple sensors are used), requires a
state space reparameterization to each new coordinate frame, but is more efficient
overall1 and ensures that the occupancies are always in view of the current depth
map. However, it may lead to pose drift when output depth maps are used in
pose estimation, e.g . [15].

We assume that we are given a transformation function, πt : ijk → xyz,
which converts coordinates from the frame at time t to that at time t−1. Outlier
ratio distribution parameters are resampled from the voxel grid of values of the
previous time frame, using linear interpolation, as follows:

αtijk = α′t−1πt(ijk)
, βtijk = β′t−1πt(ijk)

. (23)

This resampling is the reason we have an outlier ratio per occupancy variable
rather than per ray—a per-ray ratio cannot easily be resampled.

1 The colinear case enables an efficient ray integration, whereby the γi, etc. of each ray
can be updated in two sequential passes along the ray. The fixed-grid case requires
a separate ray integration per voxel, making it O(N) times slower.
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Resampling occupancies (i.e. γtijk values) is not as trivial, because the com-
putation of p(v) (eqn. (12)) is not sampling-invariant—a näıve resampling which
doubles the occupancy resolution will lead to a different shaped distribution. To
avoid this we resample the occupancy density—each occupancy value is divided
by the length of the voxel along the ray, denoted dtijk, to compute a density, the
new occupancy voxels are sampled, then multiplied by their new length along
the ray. This approach can be shown to be sampling-invariant in the limit as
voxel lengths tend to zero. In all resamplings, voxels outside the previous grid
are initialized to 0.

In addition, to account for motion in scenes, we assume that, between time
steps, visible surfaces can disappear with probability ψ, and that new visible
surfaces can appear along rays with probability φ. To avoid biasing the position
of the visible surface, this latter value is divided uniformly in visibility (not
occupancy) space over all occupancies along a ray, by inverting equation (12),
giving

p(xti = 1|xt−1i = 0) =
φ

N − φ · (i− 1)
= φi, p(xti = 0|xt−1i = 1) = ψ. (24)

The occupancy update is therefore

γtijk =
γ′t−1πt(ijk)

dt−1πt(ijk)

· dtijk · (1− ψ − φi) + φi. (25)

This update, and those of equation (23), make up the p(xt,ωt|xt−1,ωt−1) term
of equation (22).

It should be noted that the occupancy prior of equation (24) is viewing
direction dependent—a prior that is uniform in visibility space in one direction
is not uniform in any other direction. Therefore if the sensor position changes,
this can bias the position of the visible surface, regardless of the parameterization
of the occupancy grid.

2.3 Computing depth

Above we have described how to compute the occupancy probability of each
point in a grid. However, most applications require an actual depth map as
output. We compute each depth independently, casting the ray along which the
depth is required into the occupancy grid, and outputting the distance to the
maximum in the range [1, N ] of the posterior visibility distribution, i.e. equation
(12), but using parameters γ′i etc. The position of each depth output is refined
by fitting a quadratic function to the mode.

3 Evaluation

In our evaluation we test our own three methods, namely Generative1, which
is given ω as an input, Generative2, which infers a single ω for the sensor, and
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Fig. 1. Methodology. Each test sequence frame (a) is corrupted with noise (b) per
equation (26), then given to the fusion algorithm along with the transformation func-
tion, πt. Given the output of the fusion algorithm (c), error is given by its absolute
difference from ground truth. The per pixel disparity errors are used to compute an
error-recall graph (d), recall being the proportion of pixels with an error lower than
the threshold (x-axis). The graph is plotted up to an error threshold of 5 (our chosen
maximum acceptable error), and the area under this graph computed then divided by
5 to give an accuracy score between 0 and 1. This score is computed every frame.

Generative3, which infers an ωi for each occupancy grid position, and compare
them against three methods from the literature, namely those of Pathak et al.
[12] and Konolige [8], and the TSDF [14], as implemented in [15].

3.1 Methodology

Our quantitative analysis methodology, outlined in figure 1, is based on synthetic
data, so that we have ground truth depth and sensor pose. We parameterize
depth by its inverse,2 which we refer to as disparity—the methods’ state variables
are positioned at integer disparities from 1 to N = 100 along each ray. We
have generated six sequences of 60–200 frames, similar to figure 1(a), for this
evaluation. Each frame of a sequence is corrupted with noise prior to fusion, with
the noise applied to each pixel drawn randomly from

p(d′|d) = $ · U(d′) + (1−$) · N (d′; d, σ), (26)

where d is the real-valued ground truth disparity and d′ is the noisy measure-
ment. The uniform distribution, U(·), represents outliers ($ is the outlier ratio),
and the normal distribution, N (·;µ, σ), represents sensor noise. We choose the
clutter and measurement distributions of equation (2) to match those distribu-
tions, and the given outlier ratio ω to match also, unless otherwise stated. We
use σ = 3 in our tests here, finding that this value didn’t change the nature of the
results much. This forms the data likelihood term used by all the probabilistic
methods, i.e. all methods except TSDF, which requires only the disparity esti-
mate and a truncation threshold, for which we use 2σ. The scoring mechanism
is described in figure 1.

2 Noise variances tend to be more uniform over disparity than depth when using stereo-
based depth estimates (depending on sensor motion), therefore discretizing regularly
over disparity is a more efficient use of state variables in those cases.
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Fig. 2. Occupancies, other states and the effect of discretization. (a)–(f) show, in
blue, the occupancies (or equivalent state variable) for the ray marked with a white
cross in figure 1(c). The occupancy for (e) Konolige is stored as a log likelihood ratio
[8]; the red line denotes occupancy probabilities of 0.5. The red lines in (a)–(d) denote
the visibility distribution of equation (12), used to compute depth. Dashed black and
red lines mark the ground truth and output disparities respectively. (g), (h) The final
error images of the experiment of figure 3(a) for Generative1 and TSDF respectively,
showing (g) the artifacts of disparity discretization.

$ Generative1 Generative2 Generative3 Pathak et al. Konolige TSDF

S
ta

ti
c

se
n
so

r

0 0.065±0.34 0.069±0.33 0.36±0.62 0.000±0.33 1.37±0.25 -0.17±0.23
0.1 0.064±0.35 0.059±0.34 0.19±0.45 -0.002±0.33 1.32±0.25 -0.37±0.31
0.4 0.090±0.39 0.073±0.39 0.070±0.40 -0.002±0.37 1.18±0.33 -7.33±18.0
0.9 0.60±7.08 0.24±6.79 0.45±6.94 0.79±7.91 3.15±11.0 -23.7±20.0

M
o
v
in
g

se
n
so

r

0 0.35±0.97 0.33±1.09 0.35±1.43 0.27±0.86 2.09±8.49 -0.59±3.53
0.1 0.35±2.13 0.34±2.16 0.36±2.20 0.42±2.77 3.69±14.1 -0.69±4.35
0.4 0.50±3.85 0.41±4.09 0.48±3.87 0.74±4.86 6.90±21.1 -1.52±6.87
0.9 2.96±11.1 8.00±18.4 3.39±12.7 3.11±11.1 20.9±32.2 -10.1±12.6

Table 1. Disparity bias. Mean disparity error (± 1 s.d.) for the final frame for two
scenes: one with a static sensor, the other with a moving sensor.

Much of the relative performance of methods can be explained by their states,
e.g . occupancy probabilities, shown for a particular ray (with three seen surfaces)
in figure 2. For example, TSDF locates depth as a zero crossing, which can be
located more accurately than the maxima used by the other methods, which
have discretization artifacts (fig. 2(g),(h)). Also, notice that our three methods
(a)–(c) have better defined occupancy maxima than Pathak et al ., a result of the
latter’s incorrect estimation of occupancy from visibility alone. Finally, in the
case of (a)–(d), once evidence for a near point has built up, any measurements
behind the peak in visibility (red lines) are explained as outliers (if there is
an outlier distribution), leading to a systemic frontal bias, i.e. a bias for closer
disparities.

3.2 Results

Static performance. Figure 3 demonstrates how the methods perform on a
static scene and sensor. Konolige performs badly with no outliers, and counter-
intuitively improves as $, or rather ω (true and given outlier rations respectively;
see dotted lines, fig. 3(b)), increases. However, at low outlier ratios it has very
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Fig. 3. Static scene. Scores over time for the six methods, with different values of
outlier ratio $. Both scene and sensor are static. In some cases, indicated by dotted
lines, the given ratio, ω, differs from the true ratio, $.
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Fig. 4. Variable outlier ratio. (a) (top)
Per-pixel outlier ratios used on a static
scene and static sensor. (b) The outlier
ratios of the final output disparities com-
puted by Generative3. (c) The scores over
time for the six methods on this sequence.
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Fig. 5. Motion. Scores over time for the
six methods, for a static scene and moving
sensor (a), and for a static sensor with one
object moving in the scene (b). $ = 0.1
for both sequences.

broad, flat peaks in occupancy (fig. 2(e)), the maxima of which are very sensitive
to each new measurement; as ω increases, the clutter distribution competes as
an explanation for the measurement, making the peaks narrower and therefore
more robust. Generative3 also performs worse than the other methods, a result
of frontal bias.

As $ increases, TSDF performs increasingly badly; at $ = 0.9 (fig. 3(d)),
whilst the other methods slowly improve their depth estimates over time, TSDF
performs worse than just outputting the input disparity. This is a result of
the method having no means of accounting for outliers. Pathak et al . scores
marginally better than the Generative methods; since it uses a stronger assump-
tion, that occupancy derives only from visibility, and not occlusion, when this
assumption is true it can be expected to perform better.

If $ is overestimated (dotted lines, fig. 3(b)), or varies across rays, as in figure
4, then methods other than TSDF still perform well. Generative3 has no real
advantage, even though it is able to estimate ωi per voxel (fig. 4(b)). However,
when $ is grossly underestimated (dotted lines, fig. 3(d)), then those methods
which cannot estimate ω themselves perform very poorly, again a result of the
biasing problem.
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Fig. 6. Appearing/disappearing objects. Scores over time for the six methods,
with different values of $. Both scene and sensor are static, but two objects either
appear or disappear between frames 30 and 31.

Motion performance. With scenes involving motion, φ and ψ are esti-
mated from the ground truth data, and applied to all methods except TSDF, for
which we set Wη=10 (see [15]). Figure 5(a) shows results with a moving sensor
and static scene, investigating the effect of surfaces becoming occluded and dis-
occluded. The methods (Konolige aside, and ignored henceforth) perform very
similarly, all showing robustness to those effects.

When objects appear in the scene (figure 6), TSDF does not start to react
until Wη frames have passed, and when objects disappear, revealing a back-
ground surface, it reacts slightly faster; both effects are independent of $. With
$ = 0 (fig. 6(b)), other methods update to the new disparity much faster, within
a frame or two. As $ increases (fig. 6(c),(d)), changes can be explained away
as outliers, slowing the update, especially the reaction to disappearing surfaces
(another impact of frontal bias); Pathak et al . suffers particularly here. The
Generative approaches’ faster reactions mean that they cope better with scene
motion, as indicated by figure 5(b).

Systemic bias. Table 1 shows the bias in disparity error for each of the
methods on a static and a moving scene. On the static scene the Generative
methods have a small frontal bias, caused by nearer occupancies lowering more
distant ones due to occlusion modelling. In this case Pathak et al . has no signif-
icant bias at all, due to its occlusion heuristic—occupancy derives entirely from
p(v) up to some significant distance beyond the peak, so only gross outliers can
cause a bias. TSDF shows a larger rearward bias, due to the weighting function
truncating the TSDF asymmetrically, in favour of more distant measurements.
On the moving scene all biases are more significant, with that of Pathak et al .
being similar in magnitude to those of the Generative methods, a fact that we
attribute to the viewpoint-variant occupancy prior.

Monocular stereo. Given a video (and view pose) from a moving camera,
we obtain coarse disparity estimates by finding maxima of normalized cross cor-
relation (NCC) scores for 5×5 windows between pairs of frames, similar to [17],
and fuse these estimates.3 We quantitatively evaluate the methods by texture
mapping one of our synthetic scenes (with sensor motion) and applying this ap-
proach. The results, in figure 7, show TSDF performing significantly better, and

3 For TSDF we use just the best disparity, while for other methods we compute a data
likelihood distribution using all modes of NCC scoring over 0.5.
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in particular the Generative methods suffering from a lack of disparity accuracy
(fig. 7(b)). This can be seen, from the dominant blue haze in figure 7(c), to be
due to frontal bias.

Qualitative results on a real sequence, shown in figure 8, indicate the benefits
of our model: fewer disparity artifacts relative to TSDF (see fig. 8(g), center and
top left), and fewer artifacts at occlusion boundaries (right of dome) compared
to Pathak et al . However, figures 8(c,d) suggest the relative biases of the three
methods persist on real data too.

KinectFusion. We implemented Generative1 as the fusion strategy within
an open source implementation [20] of KinectFusion [15]. Figure 9 compares
our result with those of Pathak et al . and the original algorithm. We use a
384×960×720 volume, providing a border around each 640×480 frame; the
original TSDF approach uses a static, 5123 volume. While the latter algorithm
runs at 30fps, ours (and our implementation of [12]) runs at 9fps, the main
slow-down being the coordinate frame reparameterization (i.e. resampling the
volume) every frame, which, while necessary, allows the sensor to move freely in
world, and move into the scene to resolve more details ((c) vs. (g), see keyboard
and plant leaves).

Our model updates almost instantly to scene changes ((d) vs. (h)), using
ω = 0, instantaneously creating a new peak in p(v) at the correct disparity, but
taking one more frame to surpass the magnitude of the background peak. Pathak
et al . requires only one frame for the first peak to be largest, hence the arms (f)
are more complete.

4 Conclusion

We can summarize our findings as follows: In comparison to occupancy grids
which update occupancies independently e.g . [8], our inter-dependent visibility
model produces much better depth localization. In comparison to the very similar
approach of Pathak et al . [12], our model is theoretically more sound, and enables
extensions such as our probabilistic outlier models. Overall performance was
similar, but our methods had fewer occlusion boundary artifacts, and our variable
outlier ratios were able to cope with a large amount of unexpected clutter.

In comparison to the TSDF [14, 15], our three methods have pros and cons.
Their parameters relate directly to properties of the scene and sensor, so can
be set easily, they can cope much better with outliers and react much faster
to scene changes, and they provide a probabilistic certainty with the disparity
estimates. Two consequences of our per-frame state reparameterization (§2.2)
are that the sensor can be tracked over any trajectory, and that moving closer
to objects resolves more details, in contrast to [15].

Of our three methods, Generative2 strikes a good balance between robustness
to changing outlier noise conditions and avoiding too much frontal bias, as well
as keeping computation and memory requirements low.

One final point, not previously acknowledged, is that all the methods tested
with moving sensors have a systemic bias, TSDF’s being rearward and the rest
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Fig. 7. Quantitative stereo. (a) Scores over time for fused stereo data from a moving
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30 of the sequence for (c) Generative1 and (d) TSDF.
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Fig. 8. Qualitative stereo. (a) Frame 121 of 477 from an aerial movie. (b) The
estimated disparity of the input frame. The fused disparities, weighted by certainty
(TSDF weight estimated by gradient at zero crossing) and overlaid on the grayscale
input frame, are shown for (e) Generative2, (f) Pathak et al . and (g) TSDF, with
difference images (c), (d).
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Fig. 9. KinectFusion. Top row : Lit normal maps of the geometry input (a) and
computed using Generative1 (c), Pathak et al . (e) and TSDF (g), for a Kinect sensor
moving around a static scene. Bottom row : Disparity maps input (b) and computed
using Generative (d), Pathak et al . (f) and TSDF (h), for a static sensor viewing a
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being frontal. Overcoming this bias is a key future challenge to achieving accurate
online depth fusion.
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