
Reconstruction in the round using photometric normals and silhouettes.

George Vogiatzis1 Carlos Hernández2 Roberto Cipolla3

Dept. of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK

{gv2151, ch3942, cipolla3 }@eng.cam.ac.uk

Abstract

This paper addresses the problem of obtaining complete,
detailed reconstructions of shiny textureless objects. We
present an algorithm which uses silhouettes of the object,
as well as images obtained under varying illumination con-
ditions. In contrast with previous photometric stereo tech-
niques, ours is not limited to a single viewpoint and pro-
duces accurate reconstructions in full 3D. A number of im-
ages of the object are obtained from multiple viewpoints,
under varying lighting conditions. Starting from the silhou-
ettes, the algorithm recovers camera motion and constructs
the object’s visual hull. This is then used to recover the
illumination and initialise a multi-view photometric stereo
scheme to obtain a closed surface reconstruction. The con-
tributions of the paper are twofold: Firstly we describe
a robust technique to estimate light directions and inten-
sities and secondly, we introduce a novel formulation of
photometric stereo which combines multiple viewpoints and
hence allows closed surface reconstructions. The algorithm
has been implemented as a practical model acquisition sys-
tem. Here, a quantitative evaluation of the algorithm on
synthetic data is presented together with a complete recon-
struction of a challenging real object.

1. Introduction

We propose a method for acquiring a complete 3D model
of a uniform untextured object from a number of images
captured under varying light conditions. The object’s re-
flectance is assumed to follow Lambert’s law but a signifi-
cant number of highlights are present. A sequence of im-
ages of such an object is given, where the object moves
in front of a fixed camera and a single distant light-source
moves arbitrarily between each image capture. It is also
assumed that the object can be segmented from the back-
ground and silhouettes extracted automatically.

Shape recovery from images is a well established com-
puter vision task with two families of techniques offering
the most accurate results, multi-view stereo and photomet-
ric stereo (see [6] and [5] for some of the best quality results

Figure 1. Reconstructing textureless shiny objects. Objects
from textureless shiny materials such as the porcelain figurine
shown, present a challenge for shape reconstruction algorithms.
The lack of surface features makes traditional multi-view stereo
very difficult to apply while photometric stereo has so far only
been able to produce 2.5D reconstructions. Our algorithm is able
to produce closed-surface, full 3D reconstructions of many-sided
objects, from a sequence of uncalibrated images and an arbitrarily
moving light-source. Here, two views of the reconstructed model
are shown next to views of the porcelain object.

from each method). While correspondence based multi-
view stereo techniques offer detailed full 3D reconstruc-
tions, they rely on richly textured objects to obtain corre-
spondences between locations in multiple images which are
triangulated to obtain shape. As a result these methods are
not directly applicable to the class of objects we are con-
sidering due to the lack of detectable surface features. An
attempt was made on reconstructing such objects in [7] but
the reconstructed models shown lack surface detail which
is due to the regularisation enforced on the reconstructed
surface. On the other hand, photometric stereo works by
observing the changes in image intensity of points on the
object surface as illumination varies. These changes reveal
the local surface orientations at those points that, when in-
tegrated, provide the 3D shape. Because photometric stereo
performs integration to recover depth, much less regular-
isation is needed and results are generally more detailed.
Furthermore, photometric stereo makes fewer assumptions
about surface texture and reflectance, which can be almost
completely arbitrary as demonstrated in [5]. However, the
simplest way to collect intensities of the same point of the
surface in multiple images is if the camera viewpoint is held
constant, in which case every pixel always corresponds to
the same point of the surface. This is a major limiting factor



of the method because it does not allow the recovery of the
full 3D geometry of a complex many-sided object such as a
sculpture. Due to this limitation existing photometric stereo
techniques have so far only been able to extract depth-maps
(e.g. [13]) with the notable recent exceptions of [15, 9],
where the authors present techniques for recovering 2.5D
reconstructions from multiple viewpoints. The full recon-
struction of many-sided objects is however still not possible
by these methods. While in theory one could apply photo-
metric stereo from multiple viewpoints and then merge the
multiple depth-maps of the object into a single 3D repre-
sentation, in practice this procedure can be complicated and
error-prone.

1.1. Our approach

In this paper a different solution is sought by exploiting
the powerful silhouette cue. We modify classic photomet-
ric stereo and cast it in a multi-view framework where the
camera is allowed to circumnavigate the object and illumi-
nation is allowed to vary. Firstly, the object’s silhouettes are
used to recover camera motion using a technique similar to
[10], and via a novel robust estimation scheme they allow
us to accurately estimate the light directions and intensities
in every image.

Secondly, the object surface, which is parameterised by
a mesh and initialised from the visual hull, is evolved un-
til its predicted appearance matches the captured images.
Each face of the mesh is projected in the images where it is
visible and the intensities are collected. From these inten-
sities and the illumination computed previously, a normal
direction is assigned to each face by solving a local least
squares problem. The mesh is then iteratively evolved un-
til these directions converge to the actual surface normals
of the mesh. These two phases are then repeated until the
mesh converges to the true surface. The advantages of our
approach are the following:

• It is fully uncalibrated: no light or camera pose cali-
bration object needs to be present in the scene.

• The full 3D geometry of a complex, shiny, textureless
object is accurately recovered, something not previ-
ously possible by any other method.

• It is practical and efficient as evidenced by our simple
acquisition setup.

The next section discusses work related to the ideas pre-
sented in this paper. Section 2 presents the part of the algo-
rithm that deals with estimating light directions and inten-
sities while Section 3 explains how a photometrically con-
sistent closed 3D surface is recovered. Section 4 discusses
the acquisition setup we use while 5 describes a set of ex-
periments carried out on real and synthetic objects. Section

6 concludes with a discussion of our key contributions and
future research directions.

1.2. Related work

This paper addresses the problem of shape reconstruc-
tion from images and is therefore related to a vast body of
computer vision research. We draw inspiration from the re-
cent work of [9] where the authors explore the possibility of
using photometric stereo with images from multiple views,
when correspondence between views is not initially known.
Their method however relies on the existence of distinct fea-
tures on the object surface which are tracked to obtain cam-
era motion and initialise the depth-map while our method
has no such requirement. Also the surface representation
is still depth-map based and consequently the models pro-
duced are 2.5D. A similar approach of extending photomet-
ric stereo to multiple views and more complex BRDFs was
presented in [12] with the limitation of almost planar 2.5D
reconstructed surfaces. Our method is based on the same
fundamental principle of bootstrapping photometric stereo
with approximate correspondences, but we use a general
volumetric framework which allows reconstruction in the
round.

Quite related to this idea is the recent work of [11] where
photometric stereo information is combined with 3D range
scan data. In that paper, using range scanning technol-
ogy a very good initial approximation to the object surface
is obtained, which however is shown to suffer from high-
frequency noise. By applying a fully calibrated 2.5D photo-
metric stereo technique, normal maps are estimated which
are then integrated to produce an improved, almost noise-
less surface geometry. Our acquisition technique is different
from [11] in the following respects: (1) we only use stan-
dard photographic images and simple light sources, (2) our
method is fully uncalibrated- all necessary information is
extracted from the object’s contours and (3) we completely
avoid the time consuming and error prone process of merg-
ing 2.5D range scans.

The use of the silhouette cue is inspired by the work of
[14] where a scheme for the recovery of illumination in-
formation, surface reflectance and geometry is described.
The algorithm described makes use of frontier points, a ge-
ometrical feature of the object obtained by the silhouettes.
Frontier points are points of the visual hull where two con-
tour generators intersect and hence are guaranteed to be on
the object surface. Furthermore the local surface orienta-
tion is known at these points, which makes them suitable
for various photometric computations such as extraction of
reflectance and illumination information. Our paper gen-
eralises the idea by examining a much richer superset of
frontier points which is the set of contour generator points.
We overcome the difficulty of localising contour generators
by a robust random sampling strategy. The price we pay is



that a considerably simpler reflectance model must be used.
Although solving a different type of problem, the work

of [7] is also highly related mainly because the class of ob-
jects addressed is similar to ours. While the energy term
defined and optimised in their paper bears strong similarity
to ours, their reconstruction setup keeps the lights fixed with
respect to the object so in fact an entirely different problem
is solved and hence a performance comparison between the
two techniques is difficult. However the results presented in
[7] at first glance seem to be lacking in detail especially in
concavities, while our technique considerably improves on
the visual hull (see Figures 4(c) vs (b)).

Finally, there is a growing volume of work on using spec-
ularities for calibrating photometric stereo (see [3] for a de-
tailed literature survey). This is an example of a different
cue used for performing uncalibrated photometric stereo on
objects of the same class as the one considered here. How-
ever methods proposed have so far only been concerned
with the fixed view case.

2. Robust estimation of light-sources from the
visual hull

When illumination directions and surface reflectance are
completely unknown it is only possible to reconstruct the
surface up to an unknown Generalised Bas-Relief ambigu-
ity by enforcing the integrability of the recovered surface
normals [1]. When surface albedo is known or constant
however, as in the case we are considering, the ambiguity
is removed. Unfortunately as mentioned in Section 1 when
the viewpoint is not fixed, image intensities of the same
surface point cannot be collected since correspondence be-
tween pixels is unknown; this is in fact what we seek to
estimate.

A different approach is to estimate illumination indepen-
dently and then focus solely on the task of reconstructing
the object surface. For an image of a Lambertian object of
constant albedo under a single distant light source and ig-
noring self-cast shadows, each surface point projects to a
point of intensity given by:

i = lTn (1)

where l is a 3D vector directed towards the light-source and
scaled by the light-source intensity and n is the surface unit
normal at the object location. It is obvious that given three
known normals and the corresponding three image intensi-
ties we can construct three such equations that can uniquely
determine l.

Our approach is to estimate illumination using the pow-
erful silhouette cue. The observation on which this is based
is the following: When the images have been calibrated for
camera motion, the object’s silhouettes allow the construc-
tion of the visual hull [8], which is defined as the maximal

volume that projects inside the silhouettes. A fundamen-
tal property of the visual hull is that its surface coincides
with the real surface of the object along a set of 3D curves,
one for each silhouette, known as contour generators [2].
Furthermore, for all points on those curves, the normal di-
rection of the visual hull surface is equal to the normal di-
rection of the object surface. Therefore if we could detect
points on the visual hull that belong to contour generators
we could use their normals and projected intensities to esti-
mate lighting. Unfortunately contour generator points can-
not be directly identified within the set of all points of the
visual hull. Light estimation however can be viewed as ro-
bust model fitting where the inliers are the contour generator
points and the outliers are the rest of the visual hull points.
One can expect that the outliers do not generate consensus
in favour of any particular illumination model while the in-
liers do so in favour of the correct model. This observation
motivates us to use a robust RANSAC scheme [4] to separate
inliers from outliers and estimate illumination direction and
intensity. The scheme is now described in detail.

Consider firstly the case of estimating the distant light
source direction and intensity in a single image. Assume
we are given a dense but discrete set of locations on the
visual hull x1, . . . ,xM which are visible in the image
and whose corresponding visual hull surface normals are
n1, . . . ,nM. Let the observed image intensities of those
points be i1, . . . , iM . At each RANSAC iteration we pick
three points at random, say xa,xb,xc and estimate a tenta-
tive illumination vector

l = [na nb nc]
−1




ia
ib
ic


 . (2)

Every visual hull point xm will now vote for this hypothe-
sis if the discrepancy between its observed intensity and its
predicted intensity is less than a threshold τ i.e.

|l · nm − im| < τ. (3)

where τ allows for quantisation errors, image noise, etc.
During the entire process, the illumination vector that gath-
ers the maximum consensus (number of votes) is kept and
after convergence its voters are used to estimate the optimal
illumination vector as the solution of a linear least squares
problem.

This simple method can also be extended in the case
where the illumination is kept fixed with respect to the cam-
era for K frames. This corresponds to K illumination vec-
tors R1l, . . . , RK l where Rk are 3×3 rotation matrices that
rotate the fixed illumination vector l with respect to the ob-
ject. In that case a point on the visual hull xm with normal
nm will vote for l if it is visible in the k-th image where its
intensity is im,k and

|(Rkl) · nm − im,k| < τ. (4)



A point is allowed to vote more than once if it is visible in
more than one image.

Even though in theory the single image case suffices for
independently recovering illumination in each image, in our
acquisition setup light can be kept fixed over more than one
frames. This allows us to use the extended scheme in order
to further improve our estimates. A performance compari-
son between the single view and the multiple view case is
provided through simulations with synthetic data in the ex-
periments section.

An interesting and very useful byproduct of the robust
RANSAC scheme is that any deviations from our assump-
tions of a Lambertian surface of uniform albedo are re-
jected as outliers. This provides the light estimation algo-
rithm with a degree of tolerance to sources of error such
as highlights, local albedo variations or self-cast shadows..
The next section describes the second part of the algorithm
which uses the estimated illumination directions and inten-
sities to recover the object surface.

3. Multi-view photometric stereo

Having estimated the distant light-source directions and
intensities for each image our goal is to find a closed 3D
surface that is photometrically consistent with the images
and the estimated illumination, i.e. its predicted appearance
by the Lambertian model and the estimated illumination
matches the images captured. To achieve this we develop
a mesh-based optimisation approach where a cost function
penalising the discrepancy between images and predicted
appearance is minimised.

Our algorithm optimises a surface S that is represented
as a mesh with vertices x1 . . .xM and triangular faces f =
1 . . . F . We denote by nf and Af the mesh normal and
the surface area at face f . Also let if,k be the intensity
of face f on image k and denote by Vf the set of images
(subset of {1, . . . , K}) in which the intensity of face f can
be measured. We will describe Vf in more detail in section
3.1. The light direction and intensity of the k-th image will
be denoted by a 3D vector lk.

The simplest possible formulation of the photometric
consistency cost is

E (x1, . . . ,xM) =
F∑

f=1

∑
k∈Vf

(
lkT nf − if,k

)2

Af (5)

Unfortunately, as we verified experimentally, this scheme
fails to converge to the right solution. This was also noted
in [7] where the authors investigated a similar equation
for a multi-view shape-from-shading algorithm. Following
their intuition albeit for a different problem, we introduce
a decoupling between the mesh normals, which depend on
x1 . . .xM, and the direction vectors used in the Lambertian

model equation which become a set of independent vari-
ables v1 . . .vF which we call photometric normals. The
new term becomes

E (x1, . . . ,xM,v1, . . . ,vF) =
Em (x1, . . . ,xM;v1, . . . ,vF)

+ Ev (v1, . . . ,vF;x1, . . . ,xM) (6)

where the first term Em brings the mesh normals close to
the photometric normals through the following equation:

Em (x1, . . . ,xM;v1, . . . ,vF) =
F∑

f=1

‖nf − vf‖2
Af (7)

and the second term Ev links the photometric normals to
the observed image intensities through:

Ev (v1, . . . ,vF;x1, . . . ,xM) =
F∑

f=1

∑
k∈Vf

(
lkT vf − if,k

)2

.

(8)
This decoupled energy function is optimised by iterating the
following two steps:

1. Vertex optimisation.The photometric normals are
kept fixed while Em is optimised with respect to the
vertex locations using gradient descent.

2. Photometric normal update. The vertex locations are
kept fixed while Ev is optimised with respect to the
photometric normals. This is achieved by solving the
following independent linear least squares problems
for each face f :

vf = argmin
v

∑
k∈Vf

(
lkT v − if,k

)2

s.t. ‖v‖ = 1 (9)

These two steps are interleaved until convergence which
takes about 20 steps for the sequences we experimented
with. Typically each integration phase takes about 100 gra-
dient descent iterations.

3.1. Visibility map

The visibility map Vf is a set of images in which we
can measure the intensity of face f . It excludes images in
which face f is occluded using the current surface estimate
as the occluding volume as well as images where face f
lies in shadow. Shadows are detected by a simple thresh-
olding mechanism, i.e. face f is assumed to be in shadow
in image k if if,k < τshadow where τshadow is a sufficiently
low intensity threshold. Due to the inclusion of a significant
number of viewpoints in Vf , (normally at least 4) the system
is quite robust to the choice of τshadow. For all the experi-
ments presented here, the value τshadow = 5 was used (for
intensities in the range 0-255).



Capture images of object.
Extract silhouettes.
Recover camera motion and compute visual hull.
Estimate light directions and intensities in every image
(Section 2).
Initialise a mesh with vertices x1 . . .xM and faces f =
1 . . . F to the object’s visual hull.
while mesh-not-converged do

Optimise Ev with respect to v1 . . .vF.
Optimise Em with respect to x1 . . .xM.

end while

Figure 2. The multi-view reconstruction algorithm.

4. Acquisition setup

The setup used to acquire the 3D model of the object
is quite simple. It consists of a turntable, onto which the
object is mounted, a 60W halogen lamp and a digital cam-
era. The object rotates on the turntable and 36 images of
the object are captured by the camera while the position of
the lamp is changed. Even though our method is able to re-
cover the light direction and intensity independently in each
image, estimation accuracy is improved if light can be held
constant for more than one frame, as shown in Figure 8. In
our experiments we have used three different light positions
which means that the position of the lamp was changed af-
ter twelve, and again after twenty-four frames. The distant
light source assumptions are satisfied if an object of about
15cm is placed 3-4m away from the light.

5. Experiments

In this section we present an experimental evaluation of
our algorithm, first on a real challenging object and then on
a synthetic scene for which ground truth is known.

5.1. Real objects

The algorithm was tested on two challenging shiny
porcelain figurines shown in figures 4 and 5. Thirty-six
922 × 1158 images of each of the porcelain objects were
captured under three different illuminations (twelve images
per illumination). The object silhouettes were extracted by
intensity thresholding and were used to estimate camera
motion and construct the visual hull (second row of figures
4 and 5). The visual hull was then processed by the robust
light estimation scheme of Section 2 to recover the distance
light-source directions and intensities in each image. Figure
3 qualitatively demonstrates the stability of the light esti-
mation algorithm for the first and simplest porcelain object.
The light directions obtained by 20 independent runs of the
robust scheme are shown to be within 1.4 degrees off the
mean light directions obtained.

Figure 3. Light estimation is stable. The figure shows the visual
hull and the three recovered light directions. The point clouds at
the end of each of the three light direction vectors show the results
of individual RANSAC runs which are on average 0.8 degrees away
from the mean estimate with a standard deviation of 0.5 degrees.

In the next part of the algorithm, as described in Section
3, a mesh surface is initialised from the visual hull and itera-
tively deformed until it becomes photometrically consistent
with the images. This is achieved in 20 iterations of the pho-
tometric normal update and vertex optimisation phases. 100
gradient descent steps were used for each vertex optimisa-
tion phase. Figures 4(c) and 5(c) show the reconstruction
results obtained by our algorithm for the two porcelain fig-
urines. Most of the surface details of the two reconstructed
objects have been captured. Due to the fact that the ob-
jects are completely textureless, standard correspondence-
based multi-view stereo algorithms will fail because of the
inability to establish correspondences between different im-
ages. As a result, the only method able to produce a multi-
sided, closed surface reconstruction is Shape from Silhou-
ettes, which generates the visual hull shown in the Figures
4(b) and 5(b). Note that the visual hull reconstruction lacks
all shape concavities, which are however correctly recov-
ered by our method.

To better understand the effect of the quality of the visual
hull on our algorithm, we performed the same experiment of
reconstructing the first porcelain figurine from thirty-six im-
ages, but this time the visual hull was constructed from just
four silhouettes, generating the shape shown in Figure 7.
Both light estimation and the initialisation were performed
using this volume, and the results demonstrated the robust-
ness of the algorithm against visual hulls that are far away
from the true surface. Figure 7 provides an illustration of
the voting process of the light estimation algorithm. The vi-
sual hull from four views is a simple shape with four facets,
each traversed by a contour generator. Two views of this
volume are shown, on which have been marked the posi-
tions of the voters for the estimated light direction. The vot-
ers are forming curves along the facets which coincide with
the regions where the porcelain figurine would be tangent



(a) Input images.

(b) Visual hull reconstruction.

(c) Our results.

(d) Close up images of porcelain.

(e) Close up views of reconstructed model.

Figure 4. Reconstructing porcelain. A porcelain figurine is re-
constructed from a sequence of 36 images (four of which are
shown in (a)). The object moves in front of the camera and il-
lumination (a 60W halogen lamp) changes direction twice during
the image capture process. (b) shows the results of a visual hull re-
construction while (c) shows the results of our algorithm. Details
of the reconstruction are shown below photographic images of the
actual object from similar views in (d) and (e).

(a) Input images.

(b) Visual hull reconstruction.

(c) Our results.

Figure 5. Reconstructing porcelain figurines. A more complex
porcelain object is reconstructed from 36 images. Experimental
setup is identical to that of Figure 4.

to the visual hull volume, i.e. the contour generators. Even
using such a coarse shape for the visual hull, the estimation
algorithm is able to obtain a light direction estimate which
is just 1.5 degrees away from the estimate obtained from the
full visual hull of thirty-six views.

Finally, we initialised the mesh using this coarse visual
hull, and the evolution, six snapshots of which are shown in
Figure 6, once again converged to the true surface after the
same number of iterations as previously. This implies that
the mesh evolution algorithm is tolerant to poor initialisa-
tions such as the one provided.

5.2. Synthetic object

To quantitatively analyze the performance of the multi-
view photometric stereo scheme presented here with ground



Figure 6. Mesh evolution converges even with poor initialisation. To test the radius of convergence of the iterative mesh evolution
algorithm the mesh was initialised from the visual hull generated by four silhouettes (leftmost image). The figure shows several snapshots
of the evolution. The mesh gradually evolves to the correct volume after 20 iterations of the two phases, the photometric normal update
phase followed by 100 gradient descent minimisation steps for the vertex optimisation phase.

Figure 7. Light recovery. To better illustrate the illumination es-
timation algorithm here we performed the estimation using the vi-
sual hull generated from four silhouettes. The figure shows two
views of the visual hull, on which the points that vote for the final
illumination direction are marked in red. The voters are forming
long 3D curves along the sides of the visual hull which coincide
with the contour generators. Even with such a coarse approxi-
mation to the original geometry the RANSAC estimation scheme
recovers light directions less than 1.5 degrees away from the esti-
mates recovered using the full visual hull computed from 36 sil-
houettes.

truth, an experiment on a synthetic scene was performed
(Figure 8). A 3D model of a sculpture (digitised via a differ-
ent technique) was rendered from 36 viewpoints with uni-
form albedo and using the Lambertian reflectance model.
The 36 frames were split into three sets of 12 and within
each set the single distant illumination source was held con-
stant. Silhouettes were extracted from the images and the
visual hull was constructed. This was then used to esti-
mate the illumination direction and intensity as described
in Section 2. In 1000 runs of the illumination estimation
method for the synthetic scene, the mean light direction es-

timate was 0.75 degrees away from the true direction with a
standard deviation of 0.41 degrees. The model obtained by
our algorithm was compared to the ground truth surface by
measuring the distance of each point on our model from the
closest point in the ground truth model. This distance was
found to be about 0.5mm when the length of the biggest di-
agonal of the bounding box volume was defined to be 1m.
Even though this result was obtained from perfect noiseless
images it is quite significant since it implies that any loss of
accuracy can only be attributed to the violations of our as-
sumptions rather than the optimisation methods themselves.
Many traditional multi-view stereo methods cannot achieve
this due to the strong regularisation that must be imposed
on the surface. By contrast our method requires no regular-
isation when faced with noiseless images.

Finally, we investigated the effect of the number of
frames during which illumination is held constant with re-
spect to the camera frame. Our algorithm can in theory
obtain the illumination direction and intensity in every im-
age independently. However by keeping the lighting fixed
over two or more frames, and supplying that knowledge to
the algorithm can significantly improve estimates. The next
experiment was designed to test this improvement by per-
forming a light estimation over K images where the light
has been kept fixed with respect to the camera. The results
are plotted in Figure 8 and show the improvement of the ac-
curacy of the recovered lighting directions as K increases
from 1 to 12. The metric used was the angle between the
ground truth light direction and the estimated light direction
over 1000 runs of the robust estimation scheme. For K = 1
the algorithm achieves a mean error of 1.57 degrees with
a standard deviation of 0.88 while for K = 12 it achieves
0.75 degrees with a standard deviation of 0.41 degrees.

The decision for selecting a value for K should be a
consideration of the tradeoff between practicality and max-
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Figure 8. Evaluation of illumination estimation. The figure
shows the effect of varying the length of the frame subsequences
that have constant light. The angle between the recovered light
direction and ground truth has been measured for 1000 runs of
the RANSAC scheme for each number of frames under constant
lighting. With just a single frame per illumination the algorithm
achieves a mean error of 1.57 degrees with a standard deviation of
0.88 degrees. With 12 frames sharing the same illumination the
mean error drops to 0.75 degrees with a standard deviation of 0.41
degrees.

imising the total number of different illuminations in the
sequence which is M/K where M is the total number of
frames. We qualitatively found that the greater the num-
ber of different illuminations used, the better the surface
reconstruction accuracy, but further investigation of this is
necessary.

6. Conclusion

We have demonstrated that the powerful silhouette cue,
previously known to give camera motion information, can
also be used to extract photometric information. In particu-
lar, we have shown how the silhouettes of a uniform Lam-
bertian object are sufficient to recover an unknown illumi-
nation direction and intensity in every image. Apart from
the theoretical importance of this fact, it also has a practical
significance for a variety of techniques which assume a pre-
calibrated light-source and which could use the silhouettes
for this purpose, thus eliminating the need for special cali-
bration objects and the time consuming manual calibration
process.

This paper has presented a novel reconstruction tech-
nique using silhouettes and the cue of photometric stereo
to reconstruct uniform featureless objects in the presence of
highlights. The main contribution of the paper is a robust,
fully self-calibrating, efficient setup for the reconstruction
of such objects, which allows the recovery of a detailed 3D
model viewable from 360 degrees. This is, to our knowl-
edge, the first photometric stereo based method to achieve
this.
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