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Abstract

This paper addresses the problem of automatically obtaining
the object/background segmentation of a rigid 3D object
observed in a set of images that have been calibrated for
camera pose and intrinsics. Such segmentations can be used
to obtain a shape representation of a potentially texture-less
object by computing a visual hull. We propose an automatic
approach where the object to be segmented is identified by the
pose of the cameras instead of user input such as 2D bounding
rectangles or brush-strokes.

The key behind our method is a pairwise MRF framework that
combines (a) foreground/background appearance models, (b)
epipolar constraints and (c) weak stereo correspondence into a
single segmentation cost function that can be efficiently solved
by Graph-cuts. The segmentation thus obtained is further
improved using silhouette coherency and then used to update
the foreground/background appearance models which are fed
into the next Graph-cut computation. These two steps are
iterated until segmentation convergences.

Our method can automatically provide a 3D surface
representation even in texture-less scenes where MVS
methods might fail. Furthermore, it confers improved
performance in images where the object is not readily
separable from the background in colour space, an area that
previous segmentation approaches have found challenging.
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1 Introduction

Shape-from-Silhouettes is a well established problem in
Computer Vision that has seen a lot of interest mainly
because in many cases (e.g. textureless objects) it is the
only viable option for estimating 3D shape with visual
sensors. Even in textured scenes, silhouettes are known
to improve reconstruction accuracy in the cases of thin
or awkward structures [12, 9]. However the problem of
extracting silhouettes of an object from a set of photographic
images, that can then be used to infer shape, has received
much less attention. Most existing SfS approaches consider
simple solutions such as background subtraction or manual
segmentation, neither of which is always feasible.

This paper describes a practical method for automatically
segmenting a set of images that have been calibrated for
camera pose and intrinsic parameters. To remove the need
for background subtraction and user input we propose the use
of inter-frame epipolar constraints arising from the rigidity of
the scene and the known camera motion. This is combined
with the established constraints on the object’s silhouettes and
a fixation condition [6, 16] that is provided by the camera
pose. To initialise the algorithm we can either start from an
automatically computed bounding box visible in all images, or
ask the user to provide their own 3D bounding volume.

The main advantage of our approach compared to previous
work is that our method still performs well even when
foreground and background are not separable in colour-space.
Methods that rely solely on generative colour models, for
example modelling object and background colour distributions
as Gaussian mixture models [3, 6, 16] are not robust when
the distributions overlap. In order to separate object and
background they must also exploit spatial constraints, either
within an image [3] or between multiple viewpoints [6, 16],
sometimes termed silhouette consistency or coherency.

The key to our improvement derives from elegantly
combining, in a single framework, geometric constraints, depth
information, appearance constraints and spatial consistency
both within a single image and over multiple views; we
combine this with silhouette coherency to produce a consistent
estimate of the object/background segmentation of a rigid
3D object. In this framework, image regions corresponding
to spatially consistent scene objects, rather than only similar
appearance, are connected across the entire dataset allowing
neighbouring images to resolve ambiguity when a particular
viewpoint observes the object against a camouflaged backdrop.
In order to enforce these constraints in a tractable manner
we first simplify the segmentation problem by pre-clustering
the scene pixels into superpixels. This allows us to form a
single interconnected graph, across all the superpixels in the
set of images, and apply the graph-cut algorithm to label each
superpixel as object or background.

We should note that, in general, the automatic segmentation
problem is ill-posed, even under geometric constraints, since
there are often multiple objects or parts of objects that are
consistent both in appearance and with respect the multiple
view geometry. In this instance the fixation condition and the
bounding box (derived from the volume visible by all cameras)



will determine the local minimum achieved. It is possible to
alter this outcome by editing the initial conditions, for example
moving the initial bounding box. Although this does introduce
a demand on the user we note that the remaining algorithm
is automatic and we have found that the fixation condition is
sufficient for a variety of different scenes.

The rest of the paper is laid out as follows. We begin by
discussing related prior work in § 2. In § 3 we provide a
definition and subsequent analysis of the problem that leads
to our proposed solution, presented in § 4. We demonstrate the
performance of our algorithm through experiments in § 5 and
the paper concludes in § 6.

2 Previous Work

This paper is about foreground/background image
segmentation and is therefore related to a vast body of previous
work (see [3] and references contained therein). However
most of this work is concerned with segmenting a single
image. Performing the interactive segmentation task for each
image in a dataset individually quickly becomes prohibitive
as the size of the dataset increases. A simple extension of
interactive 2D segmentation on video appeared in [27, 18]
where the user labels regions in a 3D space-time volume and
the system segments a space-time region corresponding to a
potentially deforming object. That method relies too heavily
on the continuity of video, specifically optical flow, and hence
cannot be applied to a typical wide-baseline MVS images. The
specific task of addressing awkward thin-structures has been
studied [26] with the use of connectivity priors that achieve
good results but rely on specific labelling from the user.

The work most directly related to ours, addressing the problem
of segmenting a calibrated set of images, can be found in
[6] and [16]. The work of [6] makes use of a fixation
constraint which assumes that the camera is always fixated on
the object of interest. Using this hypothesis, a colour model
of the foreground object is built, starting from the centres
of the images. This colour model induces a volumetric cost
functional which, when optimised, gives a new 3D surface and
a corresponding 2D segmentation in all the images. Similarly
in [16], viewing volumes of all the images are intersected and
from this initial volume, a background colour model is learnt.
Because they are highly related, these algorithms are compared
to the present work in more detail in § 3.

Our work is related to [23], where sequential multi-view
segmentation is achieved by pre-clustering each image using
Mean-Shift and then interactively segmenting the clusters
using a graph-cut optimisation. The optimisation exploits
multi-view constraints by sequentially segmenting a set of
images, and using the previous result as a shape prior on the
new image segmentation. In comparison, our work proposes a
formulation of the multi-view constraints that simultaneously
segment all the images.

The idea of over-segmenting a set of images in the context of
multi-view stereo has appeared in [13]. The key difference

of that paper to the present work is that its aim is a Multi-
view stereo algorithm using superpixel over-segmentation
to reduce computational load. Here we focus entirely on
the segmentation task, using multi-view stereo constraints to
propagate pixel labelling.

In [22], a graph-cut based approach is used to estimate the
voxel occupancy of a calibrated volume in space. Their
approach is directly aimed at using an energy minimisation
framework to regularise the process of combining a series of
imperfect silhouettes. The main difference is that they obtain
these silhouettes as the result of a background subtraction
process from a fixed, calibrated camera rig whereas our method
requires no prior knowledge of the object or environment.

The task of segmenting objects in multi-views has also been
studied in [28]. The authors use a level set method to evaluate
the segmentation based on Lambertian scenes with smooth of
constant albedo. Level set methods are known to be susceptible
to local minima so [28] relies on smooth albedo variation
and a multi-resolution scheme to achieve convergence. In
contrast, our method tolerates albedo discontinuities. This idea
was continued in [15] where the authors adopt a probabilistic
approach that is more robust to initialisation. This approach is
along the same lines as both [6] and [16], without the iterative
stage to estimate an appearance model for the object, with a
continuous formulation rather than a discrete Graph-Cuts based
approach.

The work of [1] uses unsupervised learning techniques to
attempt to automatically segment different semantic classes
from images. We address a different problem since we require
pixel accurate segmentations of a specific object observed in
multiple views in order to accurately determine shape. The
class specific segmentations of [1] deal with different instances
of objects of different types and the accuracy of the individual
segmentations is too low to recover 3D shape.

Our work is also related to uncalibrated image co-segmentation
[20] which aims at simultaneously segmenting an object out of
a set of images, but without access to any geometric rigidity
constraints. These methods focus on segmentation regions in
different image with common appearance, specifically colour
histograms, and will therefore encounter difficulties when
faced with different viewpoints, and thus appearances, of an
object and the fact that the object is observed in the same
setting, making the distinction between object and background
unclear; we are able to overcome this limitation at the expense
of requiring calibrated views.

The work of [19] makes use of superpixels and epipolar
geometry but with the intention of assigning a hard labelling
on depth and normal direction for each superpixel whereas we
take a different approach, using a soft depth labelling, which
may well be multimodal, to influence the segmentation rather
than trying to ascertain an accurate depth-map. The authors
of [24] adopt a PDE-based approach to estimate depths across
multiple images in a MVS dataset simultaneously. Again the
focus of this work is a hard estimate of depth rather than our



soft depth labelling. We are purposefully using a less precise
and multi-modal estimate of depth since the images may not
contain sufficient information for precise depth-estimation (e.g.
textureless objects) and we will use other constraints to resolve
any multi-modalities in the depth-estimates.

Finally, [5] is an example of using multi-view constraints
(in the form of Structure-from-motion results) to aid the
task of per-pixel scene labelling where the labels have been
predefined. Our work also uses multi-view rigidity constraints
in a completely unsupervised manner to infer a binary
labelling.

3 Problem Analysis

Our task is to obtain the silhouettes of a rigid 3D object
observed against an unknown background in a set ofM images
I1 .. IM of known camera calibration (pose and intrinsics).
Each image, Im is composed of a set of pixels Pm and we wish
to assign a label to each pixel p ∈ P as belonging to the object,
O or background B. This corresponds to a binary silhouette of
the object in each image.

The task of segmentation is a challenging one, many of
the latest algorithms adopt an interactive approach allowing
feedback from the user to guide the segmentation process
[3, 4]. In the case of segmentation in a single image two
constraints are typically exploited. Firstly, we expect some
form of colour or texture consistency within each segment
and variation across segments. Secondly, we also make the
assumption that segments are spatially continuous within the
image.

If we now consider the case of a calibrated set of images, it
has been shown [6, 16] that we may exploit scene rigidity to
obtain a silhouette consistency constraint between the images.
This arises due to the fact that the corresponding segmentations
in each image are projections from the same rigid 3D object.
This makes it possible to combine this constraint with the
colour coherency and image spatial priors to perform automatic
object/background segmentation of an object of interest across
multiple images.

Whilst this approach works well for certain datasets, it faces
a number of limitations when addressing those that are more
challenging. Whilst the enforcement of silhouette consistency
does compensate for poor prior information, for example when
the object and background are not readily separable in colour
space, the resulting segmentation will lose accuracy as seen
in Figure 1. Here, both the methods of [6] and [16] fail to
converge to the full object. Figure 1(b) shows the silhouettes
to be under estimated; the head of the horse is missing. The
difficulty faced by the generative model on this dataset is
shown in Figures 1(d) and 1(e) where the object likelihood
colour model fails to distinguish between the stone horse and
background foliage.

Images where the object and background are not readily
separable present a difficulty to the models used by the

(a) Images of a horse sculpture (6 of 36)

(b) Result using automatic segmentation algorithm of [6]

(c) Result using automatic segmentation algorithm of [16]

(d) Zoomed image (e) Zoomed likelihood

Figure 1: Limitations of a generative colour model. (a) 6 of the
36 images calibrated images of a horse sculpture. (b) The automatic
segmentation results obtained for the dataset using the method of [6].
We note that the body of the horse is slightly over-estimated whilst the
head of the horse is not recovered. (c) The method of [16] captures
more of the head of the horse but still fails to recover the extremities
(such as the ears and tail) and does so at the expense of capturing
portions of the background between the legs. (d) A zoomed region
of one of the images that displays the difficulty in separating object
and background based on colour or texture. (e) The converged colour
model object likelihood of the same region reflects this difficulty by

failing to distinguish clearly object and background.



algorithms of [6, 16] that adopt an iterative approach that
alternates between updating generative colour models and
enforcing spatial consistency across the views. The works of
[6, 16] maintain Gaussian Mixture Models (GMMs) which
encode probability distributions, one for the object and one
for the background in [6] or just the background in [16],
offering the advantage that we may take a single colour sample
and determine a likelihood that it belongs to the object or
background. However, when colours are shared by the object
and the background, depending on how we estimate the
GMM from the data, we may end up in a situation where the
likelihoods are either uninformative (equally likely to be object
or background) or incorrect (if the colour is predominantly
found in the other category).

The combination of an appearance model with a volumetric
approach is advantageous but fails to take into account the
location of the surface of the object which is clearly important
when similar colours are present in the foreground and
background. In contrast to a purely generative colour model,
we make use of a kernel based function to compare colours
that has the advantage that we can use extra information,
such as the epipolar distance or depth, to modulate the colour
similarity. This allows two colour samples to have a different
similarity score dependent on their spatial location and
presents a solution to the problem of the overlapping object
and background colour distributions.

This solution does come at the expense of having to set
explicitly the kernel parameters for the comparison in colour
space. Compared to the previous approaches, the clustering
kernel makes use of the Euclidean distance in colour space
whereas the GMMs of the generative model effectively
translate to a comparison metric using a data-dependent
Mahalanobis distance. This distance more accurately
reflects colour difference since it is dependent on the colour
distribution observed in the object and background. In an
attempt to mitigate the impact of the Euclidean distance, we
use linear PCA to map the colour samples into a space where
the distance is more meaningful [2].

4 Algorithm

Our iterative segmentation method is presented in Algorithm 1.
We begin with a set of M images I1 .. IM with known camera
calibration. For the sake of tractability, we begin by over-
segmenting each image Im to obtain a set of superpixels
{si}, i = 1 .. Jm, with Jm ∼ 4000, using the algorithm
of [17]. Each superpixel represents a cluster of pixels from
§ 3; therefore, we now wish to label the pixels by assigning
each superpixel a label of object or background: si ∈ {O,B}.
Each superpixel has an associated average colour ui as well
as a position xi given by the centre of the superpixel. These
superpixels then form the vertices S = {si} in a graph G =
(S,W). The edgesW of the graph are represented by an edge
adjacency matrixW whereWi,j denotes the weight of the edge
between the two superpixels si and sj , and a value of Wi,j = 0
indicates the absence of an edge. The construction of this W

Algorithm 1: The iterative segmentation algorithm.

Input
- A calibrated set of M images I1 .. IM
Initialisation
- Obtain bounding volume from visibility
foreach image Im, m = 1 ..M do

- Group pixels into superpixels {si}
- Extract fixation point

end
- Learn background colour model from outside bounding box
- Learn object colour model from fixation points
- Generate the edge matrix W
Main Loop
while visual hull not converged do

foreach image Im, m = 1 ..M do
- Evaluate object likelihood

end
- Perform graph-cut to label superpixels
- Enforce silhouette consistency
- Update object colour model from new silhouettes

end
Output
- The converged object silhouettes and visual hull

matrix is described in § 4.2.

We maintain two colour models, one for object and one for
background, each as K component Gaussian Mixture Models
(GMMs) in colour-space. These models are initialised from the
visible bounding volume [16]. We assume the object is fully
contained in each view and, for the fixation condition [6], we
assume the object is centred in each view.

The main loop of the algorithm evaluates the current object
likelihood from the colour models and uses it as the unary
data term, combined with the pairwise term of the edge matrix
W , to perform a graph-cut that assigns a binary label to
each superpixel as object or background. This labels all the
superpixels in the set of images in a single step. The resulting
silhouettes are then intersected to form a visual hull, ensuring
that the silhouettes are consistent with one another. Finally the
new silhouettes are used to update the object colour model and
the loop is repeated until convergence.

The vertices of the graph encode the likelihood of
object/background given the colour models, and the edges of
the graph encode the spatial prior (both within a 2D image and
using consistency in 3D space via epipolar transfer). We now
discuss the individual stages in further detail.

4.1 Colour Models

Comparing the appearance of world surfaces between images is
not ideal since we are forced to make quite strong assumptions
about Lambertian reflectance, constant illumination of the
scene and constant gain in the camera. We improve the



situation by using any calibration information, for example a
3D structure point cloud [21], to obtain pixel correspondences
between images and subsequently fit an affine colour model
to perform colour correction between the images, this is a
technique often used in the image mosaicing community, e.g.
[8].

We build the colour models in the same manner as [3] and [6];
namely, we maintain two K component GMMs, one for the
object (O) and one for the background (B), with corresponding
parameter vectors ΘO and ΘB. Thus we have

LO
(
si | ΘO

)
= p

(
si ∈ O | {πOk , µOk ,ΣOk }

)
(1)

=

K∑
k=1

πOk N
(
ui |µOk ,ΣOk

)
(2)

for the object likelihood and a similar form for the background
LB
(
sj | ΘB

)
. The probability distribution of the colour of the

kth component of the mixture is given by a normal distribution
with mean µk and covariance Σk. Each of the individual
components is weighted by the marginal probability of the
component p(k), termed the mixing coefficient and denoted πk.
For all our experiments we used full covariance matrices and
K = 15 (beyond which we found no further improvement).
This parameter may be determined using model selection, if
required, at the expense of computation time.

The learning process consists of sampling the pixels as
a sequence of colour vectors and using the Expectation-
Maximisation (EM) algorithm to fit the model parameters
(ΘO and ΘB) of the GMM to the sampled data [2]. We
exploit the fact that the object is seen in multiple views, and
therefore build a full colour model for the object by sampling
superpixels from all the views using the current silhouettes as a
mask, or the fixation condition [6] at the start. The background
model is also built across all the views since the object and
the scene are assumed to be rigid and thus the object will be
observed in a consistent setting. Following the same logic as
[16] we sample the superpixels outside the visibility volume
(the region visible from all cameras) since we assume that the
object is unoccluded (self-occlusions are not problematic) and
visible in all images.

4.2 Generating the Edge Matrix W

The algorithm that generates the weight matrix W is shown
graphically in Figure 2. Taking a superpixel si in image Im
we use the camera calibration to determine the corresponding
epipolar line l(i,Iµ) in a neighbouring image Iµ ∈ N(Im),
where N(Im) is the set of neighbouring images to Im. The
simplest algorithm would be to take each superpixel si and
connect it to all the superpixels {sj} in all the neighbouring
images that satisfy the epipolar constraint (the perpendicular
distance, dist(·, ·), to the epipolar line is within a given
threshold δ) {

sj | dist
(
l(i,Iµ),xj

)
< δ
}

, (3)

(b)

(a)

(d)

(c)

(e)

(f)

Figure 2: Illustration of the construction of the edge matrix W .
(a) Each of the initial images Im is over-segmented to produce a
superpixel representation {si}. (b) Every superpixel si is projected
into a set of neighbouring images using epipolar geometry. (c) Each
of the neighbouring images Iµ ∈ N(Im) is selected in turn. (d) The
set of superpixels {sj} that lie along the corresponding epipolar line
is found. (e) The depth and (f) colour consistency are found for each
sj and used to perform the soft stereo depth binning of Equation (8).

with a weight determined by the colour consistency, c(·, ·), of
the two superpixels

c (si, sj) = exp
(
−λ ||ui − uj ||22

)
. (4)

This approach suffers from two problems. The first is
demonstrated by Figure 3. Constraining neighbouring
superpixels to lie on epipolar lines is not sufficient to guarantee
that superpixels are matched correctly since image regions of
similar colour but belonging to different objects may also lie
on the epipolar line, as shown in Figure 3(a).

We enforce a spatial continuity prior within the image by
connecting neighbouring superpixels with an edge weighted by
their colour consistency as in Equation (4). It makes sense to
combine the information from all the different views, subject
to the epipolar constraints, as well. We use a weak stereo
algorithm to estimate the likely depth of the superpixel and thus
identify matches which correspond to a physical object at this
location in space. To perform this we quantise the possible



(a) Edges without depth information

(b) Edges with depth information

Figure 3: The effect of the depth information. The neighbouring
image superpixels connected to the yellow superpixel (top right
image) are shown outlined in red. (a) Shows the edges added without
using the soft stereo stage. Whilst the epipolar constraint is satisfied,
we observe that a large number of superpixels are incorrectly matched
due to loss of depth information. (b) Shows the edges added when
using the depth bins. The depth binning rejects almost all the
incorrect matches by forming a consensus on the correct depth bin
of the original superpixel. In both instances the matches have been

thresholded at the same values to produce a sparse matrix.

depth range into a set of NB depth bins, d̃n, n = [1 .. NB ],
where each bin contains depths in the range [dn,min,dn,max].
This takes account of the ambiguity in depth that occurs due
to the size of the superpixels. Noting that we have si as a
superpixel in a reference image and sj as a superpixel along the
epipolar line in a neighbouring image; we compute the depth
for each superpixel d (si, sj) correspondence

d (si, sj) = triangulate (xi,xj) (5)

and allow each superpixel to vote a particular depth-bin,
weighted by its colour consistency. This vote encourages
consensus between the neighbouring views whilst accounting
for the ambiguity in depth and provides a degree of robustness
against occlusion. It is denoted as hi( d̃n ) over the set of depth
bins {d̃n} as

hi

(
d̃n

)
= max

sj

({
c (si, sj)

∣∣∣ d (si, sj) ∈ [d̃n]
})

(6)

using the (slightly abused) notation

d (·, ·) ∈ [d̃n] ⇐⇒ d (·, ·) ∈ [dn,min,dn,max] . (7)

Due to occlusion, the correct depth may be discarded due to an

occluded view erroneously registering low colour consistency.
To increase the robustness, we include a uniform outlier
distribution over the NB depth bins. The mixing factors are
denoted α and ᾱ = (1−α) for the uniform outlier distribution
and normalised histogram distribution respectively. We may
then estimate the probability of the true depth of si falling
within bin d̃n as

p ( depth(si) ∈ [dn,min,dn,max]) = p
(

d̃n

)
=

∏
Iµ ∈ N(Im)

α( 1

NB

)
+ ᾱ

 hi

(
d̃n

)
∑
q hi

(
d̃q

)
 . (8)

This addition is not computationally intensive but results in
a marked improvement in obtaining correct edge matches, as
shown in Figure 3(b). The outlier mixing factorα is determined
by ε, the expected number of neighbouring images which
will occluded, and should be set to allow at least one of the
neighbouring images to be inconsistent as

α =
ε

|N(Im)|
>

1

|N(Im)|
. (9)

Finally, we allocate edges from each superpixel si to its
neighbours within the image and the superpixels {sj} matched
in neighbouring images, under the epipolar geometry. We set
the edge weight as

Wi,j =


p
(

d̃n

)
c(si, sj)

si ∈ Im, sj ∈ N(Im)

d(si, sj) ∈ [d̃n]

c(si, sj) si ∈ Im, sj ∈ Im

(10)

which differs for neighbouring superpixels within and across
images.

The second issue with connecting each superpixel to all its
possible neighbours is one of tractability. Even using the
superpixels from over-segmenting the image, we still have a
large problem size. The horse dataset of Figure 1(a), for
example, contains J =

∑
m Jm ∼ 160, 000 superpixels and,

potentially, a large number of edges. In order to ensure that we
may solve the graph labelling problem efficiently theW matrix
must be sparse. The epipolar constraint already promotes a
degree of sparsity in the matrix; however, we can reduce the
computational demand if we can increase sparsity without loss
of useful information. The depth binning process encourages
this since the incorrect matches will be given a very low weight
and may thus be safely thresholded from W without affecting
the resulting clusters. This is indicated by the reduction in
matches found in Figure 3(b) vs. Figure 3(a) that were both
thresholded at the same level.

The number of neighbouring images to use, |N(Im)|, is
dependent on the camera positions in the scene (as well as
the availability of computational resources since increasing



the number of neighbours reduces the sparsity). For our
experiments we used a visibility angle of 45◦, resulting in
|N(Im)| ≈ 6.

4.3 Graph-Cut

The most significant stage in the main loop of the algorithm is
the segmentation task performed by the graph-cut process each
iteration. Due to the initial over-segmentation into superpixels,
we may use the graph-cut algorithm to perform a tractable
st-mincut on a graph containing all the superpixels from all
the images to obtain a global solution to the binary labelling
problem. We formulate the task as an energy model

E
(
{si}

)
= Ed

(
{si}

)
+ ψEs

(
{si, sj}

)
(11)

that assigns a binary label to each superpixel as object, sj ∈ O,
or background, sj ∈ B. The energy comprises two terms, the
data (or unary) term and the smoothness (or pairwise) term.
The data term follows along the lines of the proposal in [6] and
is simply the likelihood of being object under the current object
and background models and thus changes at each iteration

Ed

(
{si}

)
=

∑
m

∑
i

dp(si) (12)

dp(si) =
LO
(
si |ΘO

)
LO (sj |ΘO) + LB (si |ΘB)

. (13)

The pairwise term is given by the appropriate element of the
W matrix, which favours grouping superpixels that are both
similar in appearance and spatially consistent

Es

(
{si, sj}

)
=

∑
{i,j | Wi,j 6=0}

Wi,j . (14)

This cost function may be solved exactly, i.e. the global
minimum found, in polynomial time using the graph-cut
algorithm [11].

4.4 Silhouette Consistency and Convergence

The final step of each iteration is to enforce silhouette
coherency by projecting the 2D silhouettes into the visible
volume and extracting the silhouettes of the intersected volume
for each viewpoint to give the final silhouette. In practice this
does little to alter the silhouettes but does improve accuracy
and ensure complete silhouette coherency in the face of the
inconsistent superpixel labellings — especially in the case
where the original over-segmentation leads to superpixels
that are not consistent between views. The criterion for
convergence is that the superpixel labelling fails to change (or
the number of changes are below a threshold) upon subsequent
iterations.

We identify an area for future work as finding a method of
producing a consistent superpixel segmentation which will
allow for exact computation of the silhouette consistency from
the superpixels themselves and therefore included directly in
the optimisation at each iteration. This would also allow us

(a) Results without the depth binning of § 4.2

(b) Result using the full edge matrix W

Figure 4: Results for the horse dataset. (a) The results obtained
without the depth binning process of § 4.2 that encodes weak stereo
information. As we might expect from Figure 3(a), the edges in the
W cannot help separate the horse’s head from the foliage so whilst
the result is improved compared to the result of[6], in Figure 1(b),
the head is still not recovered. (b) The automatic segmentation results
obtained using the complete algorithm successfully recover the head
of the horse from the background despite the difficulty in separating

the two in colour space.

to produce stronger and theoretically derived bounds on the
convergence of the algorithm.

5 Experiments

Our experiments were performed on a 2.6 GHz Core 2 machine
with 4 GB of RAM. The majority of the code runs under
MATLAB, the over-segmentation taking 60 s per image for
4000 superpixels and a further 120 s to construct theW matrix.
For the horse dataset, containing J = 160, 000 superpixels, the
graph-cut usually ran in under 2 s with a further 5 s to complete
the iteration. However, these are lower bounds since much of
the method, with the exception of the graph-cut, can be run
in parallel and may be computed on the GPU. The graph-cut
can also be speed up by taking advantage of the fact that the
W , and consequently the pairwise terms, don’t change and
thus we can save computation time by starting from a previous
result as in [14]. We used the following parameter settings:
ψ = 1, λ = 1, α = 0.1, |N(Im)| = 6, δ = mean superpixel
radius and NB as the mean number of superpixels along the
epipolar line (≈ 50).

Figure 4 provides the results obtained for the horse dataset.
Initially, the algorithm is run without the depth binning of § 4.2
and the segmentation obtained is shown in Figure 4(a). We



Algorithm Object Pixels Labelled Background Pixels Labelled p (correct)
Correctly Incorrectly Correctly Incorrectly

Horse Dataset
Result of [6] 82.4% 17.6% 99.4% 0.6% 95.4%
Result of [16] 93.4% 6.6% 98.5% 1.5% 97.3%
Our Result 98.9% 1.1% 98.3% 1.7% 98.4%

Plant Dataset
Result of [6] 65.5% 34.5% 96.2% 3.8% 87.9%
Result of [7] 86.8% 13.2% 94.2% 5.8% 92.2%
Result of [10] 81.9% 18.1% 93.6% 6.4% 90.4%
Result of [16] 98.1% 1.9% 97.7% 3.3% 97.1%
Our Result 94.4% 5.6% 98.4% 1.6% 97.4%

Fountain Dataset
Result of [6] 98.2% 1.8% 91.3% 8.7% 94.7%
Our Result 98.3% 1.7% 97.9% 2.1% 98.1%

Vase Dataset
Result of [6] - - - - -
Our Result 97.0% 3.0% 99.9% 0.1% 98.1%

Table Top Dataset
Result of [16] 99.4% 0.6% 42.1% 57.9% 65.7%
Result of [7] 65.2% 34.8% 93.5% 6.5% 81.9%
Our Result 96.5% 3.5% 99.5% 0.5% 98.2%

Table 1: Comparison of quantitative segmentation errors. Values given as percentages of pixels (relative
to the bounding box area) that are correctly labelled and we also provide the naive probability that a pixel
will be correctly labelled if picked (uniformly) at random from within the 2D projection of the 3D bounding

box.

can see that, whilst this is an improvement on the result of
[6], the algorithm has still failed to correctly recover the head.
Considering Figure 3(a) we might not be particularly surprised
since the colour information alone, in the pairwise term, is not
really providing any further information until we fully exploit
the scene geometry. Figure 4(b) shows the final result of the
entire algorithm and the head has been successfully segmented.

Table 1 details the relative performance of our algorithm for
the horse dataset.We can see that the algorithm confers an
improvement in performance, both qualitatively (recovering
the full head and tail) and quantitatively.

Figure 5 provides some results of the algorithm running on
the plant dataset. This dataset is particularly challenging due
to the very thin stems and leaves of the plant and the lack of
texture. The result of [6], in Figure 5(b), is relatively poor
due since the volumetric graph-cut is unable to handle the
very fine structures. MVS systems will also struggle with
the thin features and lack of texture as shown by the results
from two top performing MVS algorithms [7, 10] in Table 1.
Our approach yields better results, Figure 5(i), however we are
reaching the limits of the superpixel approach since some of
the thin structures are lost due to inaccuracies in the original
superpixels. Figure 5(j) shows this result as a visual hull

that demonstrates the extent to which the fine structures are
segmented.

Figure 6 provides some results of the algorithm running on a
standard MVS dataset from [25], thus representing a typical
MVS dataset. A quantitative analysis is given in Table 1. The
results are obtained automatically and again the dataset is
challenging since the wall and the fountain colours display
significant overlap. In Figure 6(b), we observe that the
superpixel labelling has led to some errors at the segmentation
borders although this has been reduced by the silhouette
intersection stage. We also show an example where the user
might wish to change the initial bounding box to alter the
segmentation result, e.g. including the wall in Figure 6(c). We
may further improve the situation, if required, by performing
a boundary graph-cut around the borders of the silhouette on
each image individually, similar to the approach taken in [23].

Figure 7 provides the results for a series of images of a vase
observed in a room with walls coloured similarly to the vase,
again a quantitative analysis is given in Table 1. For this dataset
we were unable to find any parameter setting that allowed
the method of [6] to converge. Changing the value of φ in
[6] resulted in either the solution collapsing to nothing or
exploding to fill the whole bounding box.



(a) Images of a vase (4 of 24) (b) Result of [6]

(c) MVS result of [7] (d) MVS result of [7] shown as a mesh

(e) MVS result of [10] (f) MVS result of [10] shown as a mesh

(g) Result of [16] (h) Result of [16] shown as a visual hull

(i) Our result (j) Our result shown as a visual hull

Figure 5: Results for the plant dataset. (a) 4 of the 24 images of the plant dataset. (b) The method of [6] performs poorly since the
volumetric graph-cut cannot handle thin structures. (c)-(f) The MVS algorithms suffer due to the lack of texture and specularities in the
scene, particularly in areas such as the flower pot. (g)-(h) Whilst the method of [16] achieves a good numerical result, qualitative inspection
shows that thin structures have not been well recovered and the algorithm has over estimated the object’s silhouettes in many areas. (i) The
automatic segmentation results obtained using the complete algorithm improves performance but still fails to reconstruct the finest features due

to superpixel boundary errors. (j) The result shown as a visual hull to emphasise the detail recovered for comparison with (h).



(a) Images of a fountain (3 of 11)

(b) Our automatic result

(c) Result with user edited bounding box

Figure 6: Results for the fountain dataset. (a) 4 of the 11 images
of the fountain dataset from a standard MVS evaluation data-set [25].
(b) The automatic segmentation results obtained using the complete
algorithm successfully recover the fountain from the background. The
automatic bounding box does not fully contain the wall, hence it is
not recovered. (c) The user is able to enlarge the initial bounding box,
in 3D, resulting in silhouettes that containing the wall as well as the

fountain.

(a) Images of a vase (6 of 33)

(b) Our result

Figure 7: Results for the vase dataset. (a) 6 of the 33 images of
the vase dataset. (b) The automatic segmentation results obtained
using the complete algorithm successfully recover the vase from the
background. Again the background and object colours overlap and for
this dataset we were unable to find parameter settings that allowed the

algorithm of [6] to converge.

(a) Images of a cluttered table top (6 of 16)

(b) Our result

(c) Result of [16]

(d) MVS result of [7]

Figure 8: Results for the table top dataset. (a) 6 of the 16 images of
the table top dataset. (b) The automatic segmentation results obtained
using the complete algorithm successfully recover the bottle from the
background. (c) The cluttered background is too complex (many
edges) for the method of [16] to converge to a reasonable solution
(algorithm remains in a loop of inconsistent solutions); making use
of depth information is a distinct advantage for this data. This is
a challenging scene for MVS since there is little texture and many
specularities, resulting in the poor result of (d). Clearly in such a
cluttered scene there will be local minima for spatially consistent
objects, here the focus of the camera determines the 3D bounding box

and hence the extraction of the bottle as opposed to other items.



Figure 8 shows the results obtained for a cluttered table top
scene. The method of [16] is unable to converge to a reasonable
solution (remaining in a loop of inconsistent solutions) due to
the large quantity of background clutter; the addition of depth
information helps our method resolve the ambiguities. Our
segmentation result for the bottle is also much superior to the
MVS surface obtained from the same bounding box due to the
lack of texture on the bottle. The variety of objects in the scene
show that there will be many local minima corresponding to
spatially consistent objects (demonstrating the ill-posed nature
of the problem). In this example, the fixation of the camera
and the bounding box (determined as the volume visible from
all camera positions) provides sufficient information to pick the
bottle as opposed to any of the other objects.

6 Conclusion

We have shown that an existing approach to automatic
object segmentation can be significantly improved by
combining a generative appearance model and silhouette
consistency with a more advanced smoothness term that takes
into account viewpoint pose as well as appearance. This
connects neighbouring images in the dataset and allows the
segmentation process to resolve the ambiguities that exist
when considering separability in colour space with appearance
and silhouette constraints alone.

Our approach is not without its limitations and there are still
avenues for further work. In a similar manner to approach
such as [3], we cannot show proofs of convergence, plus the
algorithm will be susceptible to local minima if there are
strong changes in object appearance between images. Whilst
the fixation condition has be shown to be very useful there
will be situations where it will be insufficient to initialise
colour models. We may be able to overcome these situations
by allowing user interaction, either by specifying the initial
3D bounding box or indicating errors in the result and then
updating the solution. Our formulation lends itself to this
form of interaction since the segmentation is performed on the
images, via the superpixels.
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