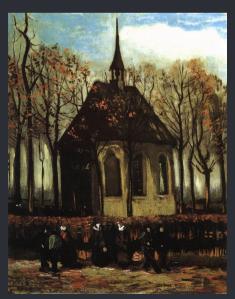
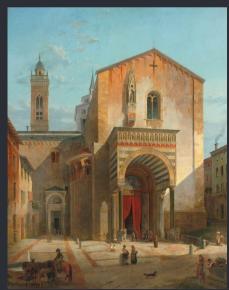
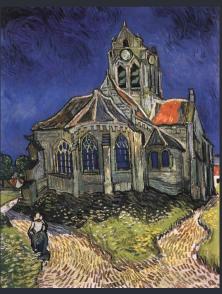
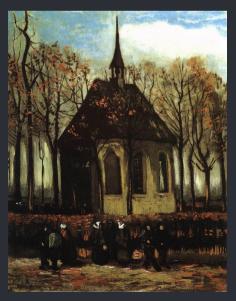


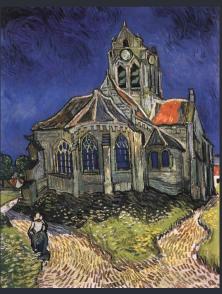
Noa Garcia & George Vogiatzis

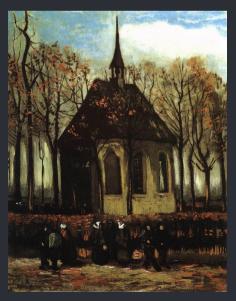

4th Workshop on Computer Vision for Art Analysis

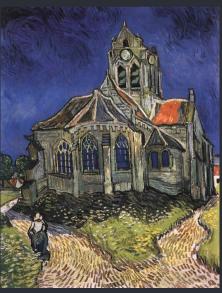

Motivation

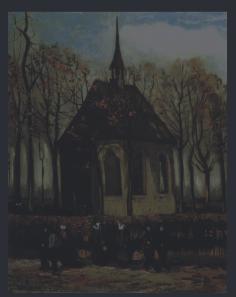




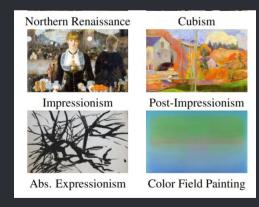








Related Work



PRINTART, 2012

Painting-91, 2014

Rijksmuseum, 2014

Wikipaintings, 2014

Paintings Database, 2014

Art500k, 2016

Related Work

Painting-91, 2014

Rijksmuseum, 2014

Wikipaintings, 2014



Paintings Database, 2014

Art500k, 2016

Data collected from the Web Gallery of Art

https://www.wga.hu/

Each sample in the dataset is a triplet

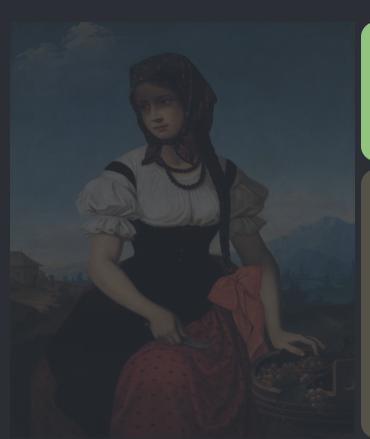
Title: Grape Harvest Girl

Author: Ljubomir Aleksandrova Type: Genre School: Other

Timeframe: 1851-1900

In Croatia, Bosnia and Herzegovina, and in northern Serbia, depending on the kind of harvest, people celebrate harvest season by dressing themselves with fruits of the harvest.

Each sample in the dataset is a triplet

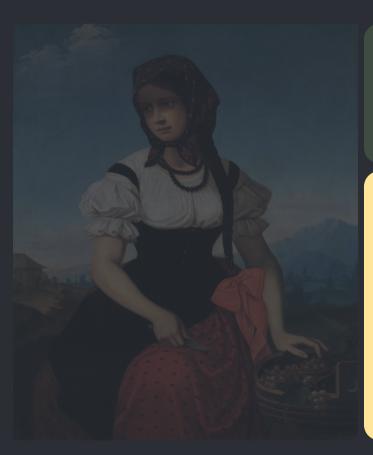

Title: Grape Harvest Girl

Author: Ljubomir Aleksandrova Type: Genre School: Other

Timeframe: 1851-1900

In Croatia, Bosnia and Herzegovina, and in northern Serbia, depending on the kind of harvest, people celebrate harvest season by dressing themselves with fruits of the harvest.

Each sample in the dataset is a triplet


Title: Grape Harvest Girl

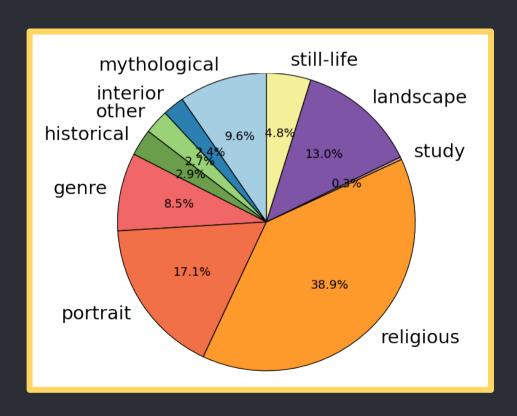
Author: Ljubomir Aleksandrova Type: Genre School: Other

Timeframe: 1851-1900

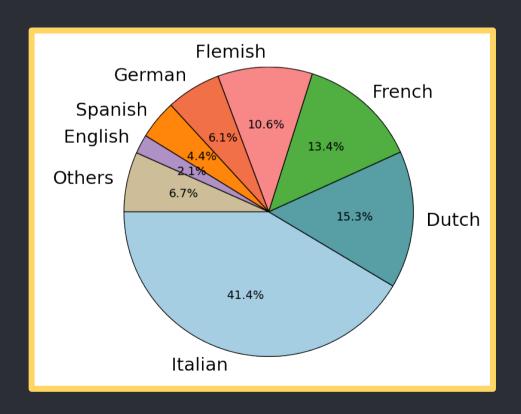
In Croatia, Bosnia and Herzegovina, and in northern Serbia, depending on the kind of harvest, people celebrate harvest season by dressing themselves with fruits of the harvest.

Each sample in the dataset is a triplet

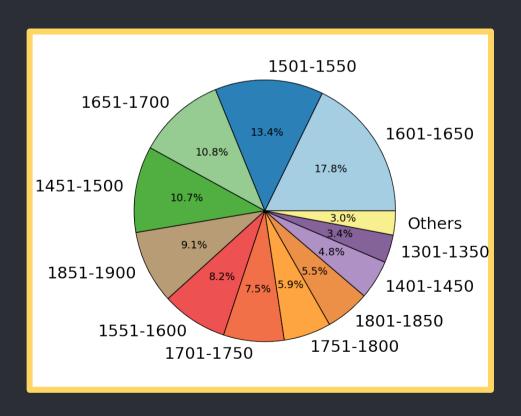
Title: Grape Harvest Girl


Author: Ljubomir Aleksandrova Type: Genre School: Other

Timeframe: 1851-1900


In Croatia, Bosnia and Herzegovina, and in northern Serbia, depending on the kind of harvest, people celebrate harvest season by dressing themselves with fruits of the harvest.

Attributes


Attributes

Attributes

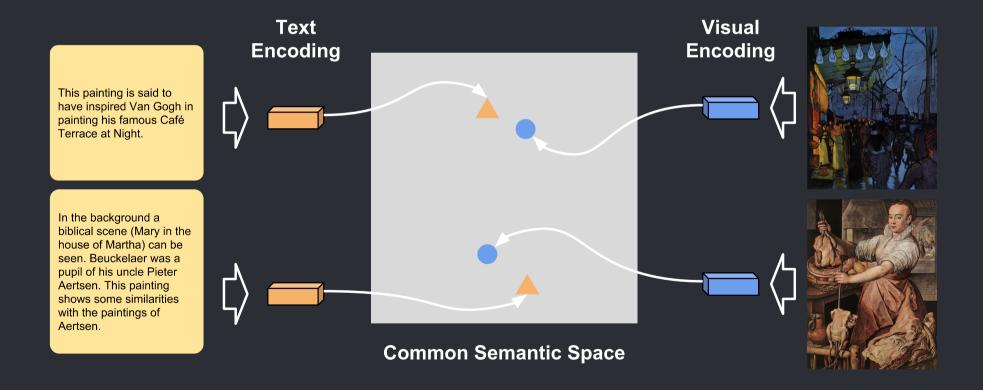
Attributes

Comments

70% with 100 words or less

The painting depicts a still-life with roses, tulips and other flowers resting on a ledge. It demonstrates the elegance, refinement, and technical brilliance cultivated during the painter's formative years in Italy.

In Croatia, Bosnia and Herzegovina, and in northern Serbia, depending on the kind of harvest, people celebrate harvest season by dressing themselves with fruits of the harvest. This landscape depicts ships moored off a rocky coastline with fishermen unloading their catch.


This view of Florence is one of a number of views by Lear based upon on the spot sketches he produced in 1861

Data splits

Partition	Num. Triplets	%
Training	19,244	90
Validation	1,069	5
Test	1,069	5
Total	21,383	100

Text2Art Challenge

Multi-modal retrieval

Text2Art Challenge

Text-to-Image Retrieval

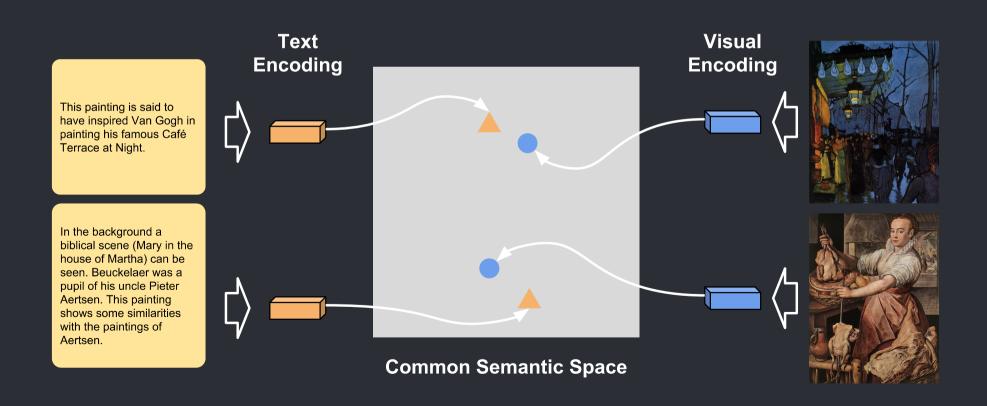
$$img^* = \underset{img_j \in K}{\operatorname{arg\,min}} d(p_k^{text}, p_j^{vis})$$

The painting depicts a still-life with roses, tulips and other flowers resting on a ledge. It demonstrates the elegance, refinement, and technical brilliance cultivated during the painter's formative years in Italy.

Text2Art Challenge

Image-to-Text Retrieval

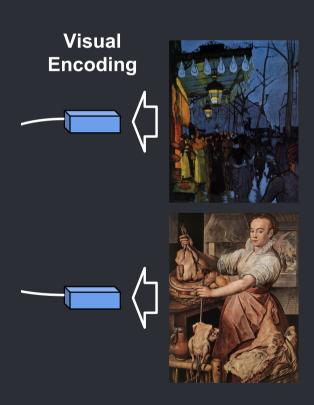
$$com^*, att^* = \underset{com_j, att_j \in K}{\operatorname{arg\,min}} d(p_j^{text}, p_k^{vis})$$



The painting depicts a still-life with roses, tulips and other flowers resting on a ledge. It demonstrates the elegance, refinement, and technical brilliance cultivated during the painter's formative years in Italy.

In Croatia, Bosnia and Herzegovina, and in northern Serbia, depending on the kind of harvest, people celebrate harvest season by dressing themselves with fruits of the harvest.

This landscape depicts ships moored off a rocky coastline with fishermen unloading their catch.


We study 3 fundamental parts: visual encoding, text encoding and multi-modal transformation

Visual Encoding

We consider the following visual encoders:

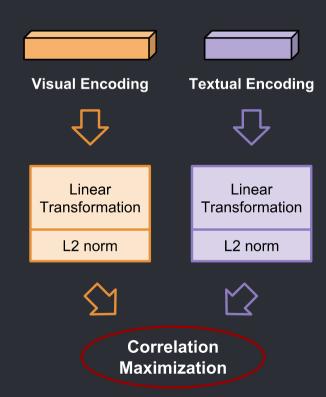
- VGG16 (Simonyan and Zisserman, 2014)
- ResNets (He et al. 2016)
- RMAC (Tolias et al. 2016)

Textual Encoding

This painting is said to have inspired Van Gogh in painting his famous Café Terrace at Night.

In the background a biblical scene (Mary in the house of Martha) can be seen. Beuckelaer was a pupil of his uncle Pieter Aertsen. This painting shows some similarities with the paintings of Aertsen.

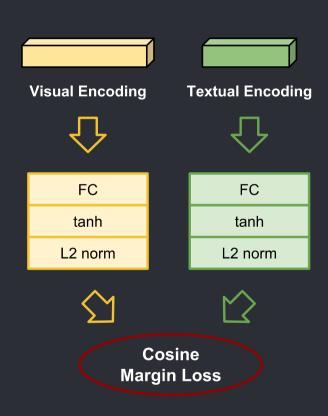
We encode titles and comments independently and concatenate their vectors.


We consider the following text encoders:

- BOW (bag-of-words)
- MLP (multilayer preceptron)
- RNN (recurrent neural networks)

Multi-Modal Transformation

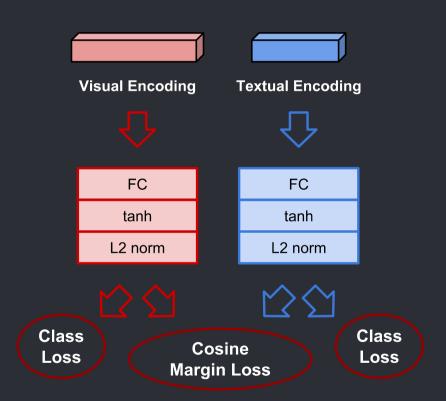
We map visual and text encodings into the common semantic space using the following methods:


CCA, CML and AMD

Multi-Modal Transformation

We map visual and text encodings into a common semantic space using the following methods:

CCA, CML and AMD



$$L_{CML}(p_k^{vis}, p_j^{text}) = \begin{cases} 1 - \cos(p_k^{vis}, p_j^{text}), & \text{if } k = j \\ \max(0, \cos(p_k^{vis}, p_j^{text}) - m), & \text{if } k \neq j \end{cases}$$

Multi-Modal Transformation

We map visual and text encodings into a common semantic space using the following methods:

CCA, CML and AMD

$$L_{AMD}(p_k^{text}, p_j^{vis}, l_{p_k^{text}}, l_{p_j^{vis}}) = (1 - 2\alpha)L_{CML}(p_k^{text}, p_j^{vis})$$

$$+\alpha L_{META}(p_k^{text}, l_{p_k^{text}}) + \alpha L_{META}(p_j^{vis}, l_{p_j^{vis}})$$

Evaluation

Visual Encoding

Encoding	g		Text-to-Image					Image-to-Text			
Img	Dim	R@1	R@5	R@10	$\overline{\mathbf{M}\mathbf{R}}$		R@1	R@5	R@10	\overline{MR}	
VGG16 FC1	4,096	0.069	0.129	0.174	115		0.061	0.129	0.180	121	
VGG16 FC2	4,096	0.051	0.097	0.109	278		0.051	0.085	0.103	275	
VGG16 FC3	1,000	0.101	0.211	0.285	44		0.094	0.217	0.283	51	
ResNet50	1,000	0.114	0.231	0.304	42		0.114	0.242	0.318	44	
ResNet152	1,000	0.108	0.254	0.343	36		0.118	0.250	0.321	36	
RMAC VGG16	512	0.092	0.206	0.286	41		0.084	0.202	0.293	44	
RMAC Res50	2,048	0.084	0.202	0.293	48		0.097	0.215	0.288	49	
RMAC Res152	2,048	0.115	0.233	0.306	44		0.103	0.238	0.305	44	

ResNet152 is the best visual encoder

Evaluation

Textual Encoding

Encoding Text-to-Image					Image-to-Text					
Com	Att	R@1	R@5	R@10	\mathbf{MR}	R@1	R@5	R@10	\mathbf{MR}	
LSTMc	LSTMa	0.053	0.162	0.256	33	0.053	0.180	0.268	33	
MLPc	LSTMa	0.089	0.260	0.376	21	0.093	0.249	0.363	21	
MLPc	MLPa	0.137	0.306	0.432	16	0.140	0.317	0.436	15	
BOWc	BOWa	0.144	0.332	0.454	14	0.138	0.327	0.457	14	

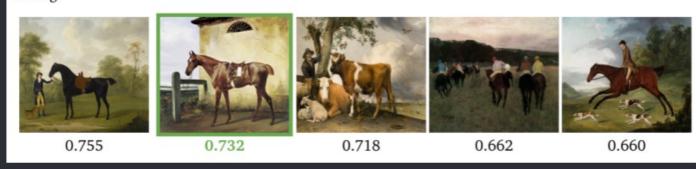
Simple BOW performs better than recurrent models, as observed in other multi-modal retrieval work (Wang et al. 2018)

Evaluation

Multi-Modal Transformation

${ m T}\epsilon$	r	Text-to	-Image		Image-to-Text					
Model	Com	Att	R@1	R@5	R@10	$\overline{\mathbf{M}}$	R@1	R@5	R@10	MR
Random	-	-	0.0008	0.004	0.009	539	0.0008	0.004	0.009	539
CCA	MLPc	MLPa	0.117	0.283	0.377	25	0.131	0.279	0.355	26
CML	BOWc	BOWa	0.144	0.332	0.454	14	0.138	0.327	0.457	14
CML	MLPc	MLPa	0.137	0.306	0.432	16	0.140	0.317	0.436	15
AMDT	MLPc	MLPa	0.114	0.304	0.398	17	0.125	0.280	0.398	16
AMDTF	MLPc	MLPa	0.117	0.297	0.389	20	0.123	0.298	0.413	17
AMDs	MLPc	MLPa	0.103	0.283	0.401	19	0.118	0.298	0.423	16
AMDA	MLPc	MLPa	0.131	0.303	0.418	17	0.120	0.302	0.428	16

CML is the best model


Qualitative Results

Title: Still-Life of Apples, Pears and Figs in a Wicker Basket on a Stone Ledge **Comment**: The large dark vine leaves and fruit are back-lit and are sharply silhouetted against the luminous background, to quite dramatic effect. Ponce's use of this effect strongly indicates the indirect influence of Caravaggio's Basket of Fruit in the Pinacoteca Ambrosiana, Milan, almost 50 years after it was created.

Title: A Saddled Race Horse Tied to a Fence

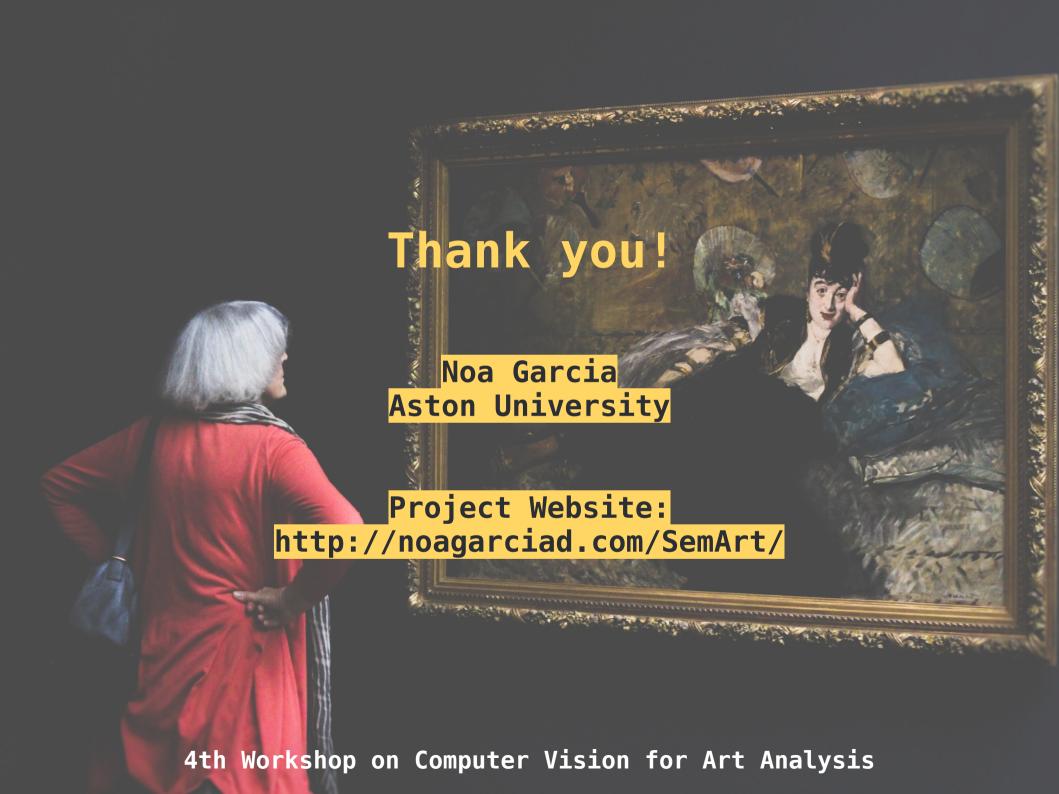
Comment: Horace Vernet enjoyed royal patronage, one of his earliest commissions was a group of ten paintings depicting Napoleon's horses. These works reveal his indebtedness to the English tradition of horse painting. The present painting was commissioned in Paris in 1828 by Jean Georges Schickler, a member of a German based banking family, who had a passion for horse racing.

Human Evaluation

Easy

Technique					Text-to-Image							
Model	Img	Com	Att	Land	Relig	Myth	Genre	Port	Total			
CCA	ResNet152	MLPc	MLPa	0.708	0.609	0.571	0.714	0.615	0.650			
CML	ResNet50	BOWc	BOWa	0.917	0.683	0.714	1	0.538	0.750			
Human	-	-	-	0.918	0.795	0.864	1	1	0.889			

Difficult


		${f Text-to-Image}$							
Model	Img	Com	Att	Land	Relig	Myth	Genre	Port	Total
$\overline{\text{CCA}}$	ResNet152	MLPc	MLPa	0.600	0.525	0.400	0.300	0.400	0.470
CML	ResNet50	BOWc	BOWa	0.500	0.875	0.600	0.200	0.500	0.620
Human	-	-	-	0.579	0.744	0.714	0.720	0.674	0.714

SemArt dataset for semantic art understanding

- SemArt dataset for semantic art understanding
- Text2Art challenge as a retrieval task

- SemArt dataset for semantic art understanding
- Text2Art challenge as a retrieval task
- Best model based on ResNet, BOW and CML

- SemArt dataset for semantic art understanding
- Text2Art challenge as a retrieval task
- Best model based on ResNet, BOW and CML
- Not that far from human performance

