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Motivation



  

Semantic Art Understanding

In this painting the church in Auvers has been transformed by the artist into a vision 
using form and colour. Painted in portrait format, the church towers up before the 
onlooker like a fortification. The path leading to it forks in the foreground into two 
narrow paths passing the church on either side. On the path to the left, her back 
turned toward us, a peasant woman is walking into the distance. The path is bathed 
in light, while the church is viewed against the backdrop of a dark blue sky that 
merges with the black-blue of the night sky at the edges of the picture. The 
brushwork is restless and full of movement, and the forms of the church are 
distorted in the Expressionist manner.



  

Semantic Art Understanding

In this painting the church in Auvers has been transformed by the artist into a vision 
using form and colour. Painted in portrait format, the church towers up before the 
onlooker like a fortification. The path leading to it forks in the foreground into two 
narrow paths passing the church on either side. On the path to the left, her back 
turned toward us, a peasant woman is walking into the distance. The path is bathed 
in light, while the church is viewed against the backdrop of a dark blue sky that 
merges with the black-blue of the night sky at the edges of the picture. The 
brushwork is restless and full of movement, and the forms of the church are 
distorted in the Expressionist manner.



  

Semantic Art Understanding

In this painting the church in Auvers has been transformed by the artist into a vision 
using form and colour. Painted in portrait format, the church towers up before the 
onlooker like a fortification. The path leading to it forks in the foreground into two 
narrow paths passing the church on either side. On the path to the left, her back 
turned toward us, a peasant woman is walking into the distance. The path is bathed 
in light, while the church is viewed against the backdrop of a dark blue sky that 
merges with the black-blue of the night sky at the edges of the picture. The 
brushwork is restless and full of movement, and the forms of the church are 
distorted in the Expressionist manner.



  

Semantic Art Understanding

In this painting the church in Auvers has been transformed by the artist into a vision 
using form and colour. Painted in portrait format, the church towers up before the 
onlooker like a fortification. The path leading to it forks in the foreground into two 
narrow paths passing the church on either side. On the path to the left, her back 
turned toward us, a peasant woman is walking into the distance. The path is bathed 
in light, while the church is viewed against the backdrop of a dark blue sky that 
merges with the black-blue of the night sky at the edges of the picture. The 
brushwork is restless and full of movement, and the forms of the church are 
distorted in the Expressionist manner.



  

Semantic Art Understanding

In this painting the church in Auvers has been transformed by the artist into a vision 
using form and colour. Painted in portrait format, the church towers up before the 
onlooker like a fortification. The path leading to it forks in the foreground into two 
narrow paths passing the church on either side. On the path to the left, her back 
turned toward us, a peasant woman is walking into the distance. The path is bathed 
in light, while the church is viewed against the backdrop of a dark blue sky that 
merges with the black-blue of the night sky at the edges of the picture. The 
brushwork is restless and full of movement, and the forms of the church are 
distorted in the Expressionist manner.



  

Related Work

Painting-91, 2014PRINTART, 2012 Rijksmuseum, 2014

Paintings Database, 2014Wikipaintings, 2014 Art500k, 2016
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SemArt Dataset

Data collected from the Web Gallery of Art

https://www.wga.hu/

Data collected from the Web Gallery of Art



  

SemArt Dataset

image, attributes and comments

Each sample in the dataset is a triplet
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Attributes

Author, Title, Date, Technique, Type, School, Timeframe
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SemArt Dataset

Comments

70% with 100 words or less



  

SemArt Dataset

Partition Num. Triplets %

Training 19,244 90

Validation 1,069 5

Test 1,069 5

Total 21,383 100

Data splits



  

Text2Art Challenge

Multi-modal retrieval



  

Text2Art Challenge

Text-to-Image Retrieval



  

Text2Art Challenge

Image-to-Text Retrieval



  

Models

We study 3 fundamental parts: visual encoding, 
text encoding and multi-modal transformation



  

Models

Visual Encoding

We consider the following 

visual encoders:

- VGG16 (Simonyan and Zisserman, 2014)

- ResNets (He et al. 2016)

- RMAC (Tolias et al. 2016)



  

Models

We encode titles and comments 
independently and concatenate 

their vectors.

We consider the following text 
encoders:

- BOW (bag-of-words)

- MLP (multilayer preceptron)

- RNN (recurrent neural networks)

Textual Encoding



  

Models

We map visual and text 

encodings into the common 

semantic space using the 

following methods:

CCA, CML and AMD

Multi-Modal Transformation
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Evaluation

Visual Encoding

ResNet152 is the best visual encoder



  

Evaluation

Textual Encoding

Simple BOW performs better than recurrent models, as 

observed in other multi-modal retrieval work (Wang et al. 2018)



  

Evaluation

Multi-Modal Transformation

CML is the best model



  

Qualitative Results



  

Human Evaluation

Easy

Difficult



  

Summary

● SemArt dataset for semantic art understanding
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Summary

● SemArt dataset for semantic art understanding

● Text2Art challenge as a retrieval task

● Best model based on ResNet, BOW and CML

● Not that far from human performance



  

Thank you!

Noa Garcia
Aston University

Project Website:
http://noagarciad.com/SemArt/

4th Workshop on Computer Vision for Art Analysis
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